Kvantové fázové přechody v systémech s konečným počtem stupňů volnosti

In the thesis we investigate and classify critical phenomena in the extended Dicke model (EDM) which describes the interaction between two-level atoms and a single-mode bosonic field (schematic model for cavity quantum electrodynamics). The model belongs to the class of so-called finite models, whic...

Full description

Bibliographic Details
Main Author: Kloc, Michal
Other Authors: Cejnar, Pavel
Format: Doctoral Thesis
Language:English
Published: 2018
Online Access:http://www.nusl.cz/ntk/nusl-388533
Description
Summary:In the thesis we investigate and classify critical phenomena in the extended Dicke model (EDM) which describes the interaction between two-level atoms and a single-mode bosonic field (schematic model for cavity quantum electrodynamics). The model belongs to the class of so-called finite models, which keep the number of degrees of freedom f constant independently on the size of the system N . The important property of these systems is that the thermodynamic limit N → ∞ coincides with the classical limit ħ → 0. This allows us to study various quantum critical phenomena, in particular the ground-state quantum phase transitions (QPTs) and the excited-state quantum phase transitions (ESQPTs), by means of semiclassical methods. Using the semiclassical approach we identify and classify the QPTs and ESQPTs in various settings of the EDM and make a link to thermal phase transitions. We study the entanglement properties of both the ground state and the excited states as a function of the atom-field interaction strength. In the integrable version of the EDM we make a link between the ESQPT and monodromy, and discuss its effect on classical dynamics. The fate of monodromy under a non-integrable perturbation is observed. The dynamical consequences of the ESQPTs are examined using quantum quenches. The influence of the...