Statistické metody pro analýzu dat s chybějícími pozorováními

Mechanisms of missing data and methods of their treatment are de- scribed in this thesis. Three mechanisms are considered - MCAR, MAR, MNAR. Two simple methods using deletion of incomplete records are introduced and their properties and shortcomings are described. Further, the principle of simple im...

Full description

Bibliographic Details
Main Author: Janoušková, Kateřina
Other Authors: Omelka, Marek
Format: Dissertation
Language:Czech
Published: 2017
Online Access:http://www.nusl.cz/ntk/nusl-352436
id ndltd-nusl.cz-oai-invenio.nusl.cz-352436
record_format oai_dc
spelling ndltd-nusl.cz-oai-invenio.nusl.cz-3524362017-09-20T04:20:24Z Statistické metody pro analýzu dat s chybějícími pozorováními Statistical analysis of datasets with missing observations Janoušková, Kateřina Omelka, Marek Kulich, Michal Mechanisms of missing data and methods of their treatment are de- scribed in this thesis. Three mechanisms are considered - MCAR, MAR, MNAR. Two simple methods using deletion of incomplete records are introduced and their properties and shortcomings are described. Further, the principle of simple imputations is explained. EM algorithm which uses the classical statistics and the algorithm of data augmentation based on Bayesian framework are derived and compared. The last method included in the thesis is the multiple imputation. The described methods are applied on real data set, first on continuous variables and then on a two dimensional contingency table. 1 2017 info:eu-repo/semantics/masterThesis http://www.nusl.cz/ntk/nusl-352436 cze info:eu-repo/semantics/restrictedAccess
collection NDLTD
language Czech
format Dissertation
sources NDLTD
description Mechanisms of missing data and methods of their treatment are de- scribed in this thesis. Three mechanisms are considered - MCAR, MAR, MNAR. Two simple methods using deletion of incomplete records are introduced and their properties and shortcomings are described. Further, the principle of simple imputations is explained. EM algorithm which uses the classical statistics and the algorithm of data augmentation based on Bayesian framework are derived and compared. The last method included in the thesis is the multiple imputation. The described methods are applied on real data set, first on continuous variables and then on a two dimensional contingency table. 1
author2 Omelka, Marek
author_facet Omelka, Marek
Janoušková, Kateřina
author Janoušková, Kateřina
spellingShingle Janoušková, Kateřina
Statistické metody pro analýzu dat s chybějícími pozorováními
author_sort Janoušková, Kateřina
title Statistické metody pro analýzu dat s chybějícími pozorováními
title_short Statistické metody pro analýzu dat s chybějícími pozorováními
title_full Statistické metody pro analýzu dat s chybějícími pozorováními
title_fullStr Statistické metody pro analýzu dat s chybějícími pozorováními
title_full_unstemmed Statistické metody pro analýzu dat s chybějícími pozorováními
title_sort statistické metody pro analýzu dat s chybějícími pozorováními
publishDate 2017
url http://www.nusl.cz/ntk/nusl-352436
work_keys_str_mv AT janouskovakaterina statistickemetodyproanalyzudatschybejicimipozorovanimi
AT janouskovakaterina statisticalanalysisofdatasetswithmissingobservations
_version_ 1718539016144420864