Interagující prostorové systémy částic

1 Title: Interacting spatial particle systems Author: Markéta Zikmundová Department: Department of Probability and Mathematical Statistics Author's e-mail address: zikmundm@karlin.mff.cuni.cz Supervisor: Prof. RNDr. Viktor Beneš, DrSc. Supervisor's e-mail address: benesv@karlin.mff.cuni.cz...

Full description

Bibliographic Details
Main Author: Zikmundová, Markéta
Other Authors: Beneš, Viktor
Format: Doctoral Thesis
Language:English
Published: 2014
Online Access:http://www.nusl.cz/ntk/nusl-335656
id ndltd-nusl.cz-oai-invenio.nusl.cz-335656
record_format oai_dc
spelling ndltd-nusl.cz-oai-invenio.nusl.cz-3356562018-12-10T04:16:32Z Interagující prostorové systémy částic Interacting spatial particle systems Zikmundová, Markéta Beneš, Viktor Pawlas, Zbyněk Volf, Petr 1 Title: Interacting spatial particle systems Author: Markéta Zikmundová Department: Department of Probability and Mathematical Statistics Author's e-mail address: zikmundm@karlin.mff.cuni.cz Supervisor: Prof. RNDr. Viktor Beneš, DrSc. Supervisor's e-mail address: benesv@karlin.mff.cuni.cz Consultant: RNDr. Kateřina Helisová, Ph.D. Consultant's e-mail address: helisova@math.feld.cvut.cz Abstract: Several kinds of random union of interacting particles is studied. We define line segment process of interacting particles in R2 and process of interacting surfaces in R3 as the models with density function p with respect to some Poisson point process. The formulas for moments of the geometrical characteristics of these models are derived and the limit behaviour when the intensity tends to infinity is investigated. For time extension of such models a simulation algorithm is developed. Various estimations of parameters of density p, among them those based on sequential Monte Carlo, are studied and compare in a simulation study. Keywords: Boolean model, process with interacting particles, U−statistics, exponential family, germ-grain model, interaction, Markov properties, point process, random closed set, Markov chain Monte Carlo. 2014 info:eu-repo/semantics/doctoralThesis http://www.nusl.cz/ntk/nusl-335656 eng info:eu-repo/semantics/restrictedAccess
collection NDLTD
language English
format Doctoral Thesis
sources NDLTD
description 1 Title: Interacting spatial particle systems Author: Markéta Zikmundová Department: Department of Probability and Mathematical Statistics Author's e-mail address: zikmundm@karlin.mff.cuni.cz Supervisor: Prof. RNDr. Viktor Beneš, DrSc. Supervisor's e-mail address: benesv@karlin.mff.cuni.cz Consultant: RNDr. Kateřina Helisová, Ph.D. Consultant's e-mail address: helisova@math.feld.cvut.cz Abstract: Several kinds of random union of interacting particles is studied. We define line segment process of interacting particles in R2 and process of interacting surfaces in R3 as the models with density function p with respect to some Poisson point process. The formulas for moments of the geometrical characteristics of these models are derived and the limit behaviour when the intensity tends to infinity is investigated. For time extension of such models a simulation algorithm is developed. Various estimations of parameters of density p, among them those based on sequential Monte Carlo, are studied and compare in a simulation study. Keywords: Boolean model, process with interacting particles, U−statistics, exponential family, germ-grain model, interaction, Markov properties, point process, random closed set, Markov chain Monte Carlo.
author2 Beneš, Viktor
author_facet Beneš, Viktor
Zikmundová, Markéta
author Zikmundová, Markéta
spellingShingle Zikmundová, Markéta
Interagující prostorové systémy částic
author_sort Zikmundová, Markéta
title Interagující prostorové systémy částic
title_short Interagující prostorové systémy částic
title_full Interagující prostorové systémy částic
title_fullStr Interagující prostorové systémy částic
title_full_unstemmed Interagující prostorové systémy částic
title_sort interagující prostorové systémy částic
publishDate 2014
url http://www.nusl.cz/ntk/nusl-335656
work_keys_str_mv AT zikmundovamarketa interagujiciprostorovesystemycastic
AT zikmundovamarketa interactingspatialparticlesystems
_version_ 1718800093968072704