Summary: | Purinergic P2X receptors are non-selective cationic channels gated by extracellular ATP. Up to now, seven mammalian subunits, termed P2X1-X7, have been cloned and characterized. These receptors comprise a new membrane channel family with distinct structural and functional features. P2X receptors take part in a signalling network called "purinergic signalling" which is widely exploited in both somatic and neuronal tissues. In the central nervous system, they are highly expressed in the hypothalamus and hypophysis, where they participate in the regulation of homeostatic and reproductional functions. The main focus of my Thesis is on the expression and functional role of P2X receptors in supraoptic nuclei of the rat hypothalamus. These nuclei contain two populations of magnocellular neurons which produce either oxytocin or arginine-vasopressin. Delivery of the hormones into the systemic blood relies on the electrical activity of supraoptic neurons, which is in turn governed by the incomming synaptic inputs. It has been recently shown, that the process of hormone release from supraoptic neurons is regulated by extracellular ATP. However, purinergic signals that regulate hormone secretion are not well understood. The aim of my study was to identify subtypes of P2X receptors expressed in the supraoptic...
|