Množinově-teoretické metody v teorii modulů
The thesis collects my actual contributions to the theory of cotorsion pairs, with closer attention paid to the application of set-theoretic methods in this area. It consists of an introduction and three papers with coauthors. The first two, already published, deal with the so-called Telescope Conje...
Main Author: | |
---|---|
Other Authors: | |
Format: | Doctoral Thesis |
Language: | English |
Published: |
2010
|
Online Access: | http://www.nusl.cz/ntk/nusl-299667 |
id |
ndltd-nusl.cz-oai-invenio.nusl.cz-299667 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-nusl.cz-oai-invenio.nusl.cz-2996672018-12-10T04:16:18Z Množinově-teoretické metody v teorii modulů Set-theoretic Methods in the Theory of Modules Šaroch, Jan Trlifaj, Jan Příhoda, Pavel Struengmann, Lutz The thesis collects my actual contributions to the theory of cotorsion pairs, with closer attention paid to the application of set-theoretic methods in this area. It consists of an introduction and three papers with coauthors. The first two, already published, deal with the so-called Telescope Conjecture for Module Categories. We prove here, for instance, that a hereditary cotorsion pair (A, B) with the class B closed under direct limits is generated by a set of countably presented modules. Moreover, if the class A is closed under direct limits too, then the pair (A, B) is cogenerated by a set of indecomposable pure-injective modules. In the third paper, we deal with the cotorsion pairs which provide us with non-trivial examples of abstract elementary classes (in the sense of Shelah). Then we study the class D of all 1-projective modules, proving e.g. that-regardless of the ring-it always forms a Kaplansky class. 2010 info:eu-repo/semantics/doctoralThesis http://www.nusl.cz/ntk/nusl-299667 eng info:eu-repo/semantics/restrictedAccess |
collection |
NDLTD |
language |
English |
format |
Doctoral Thesis |
sources |
NDLTD |
description |
The thesis collects my actual contributions to the theory of cotorsion pairs, with closer attention paid to the application of set-theoretic methods in this area. It consists of an introduction and three papers with coauthors. The first two, already published, deal with the so-called Telescope Conjecture for Module Categories. We prove here, for instance, that a hereditary cotorsion pair (A, B) with the class B closed under direct limits is generated by a set of countably presented modules. Moreover, if the class A is closed under direct limits too, then the pair (A, B) is cogenerated by a set of indecomposable pure-injective modules. In the third paper, we deal with the cotorsion pairs which provide us with non-trivial examples of abstract elementary classes (in the sense of Shelah). Then we study the class D of all 1-projective modules, proving e.g. that-regardless of the ring-it always forms a Kaplansky class. |
author2 |
Trlifaj, Jan |
author_facet |
Trlifaj, Jan Šaroch, Jan |
author |
Šaroch, Jan |
spellingShingle |
Šaroch, Jan Množinově-teoretické metody v teorii modulů |
author_sort |
Šaroch, Jan |
title |
Množinově-teoretické metody v teorii modulů |
title_short |
Množinově-teoretické metody v teorii modulů |
title_full |
Množinově-teoretické metody v teorii modulů |
title_fullStr |
Množinově-teoretické metody v teorii modulů |
title_full_unstemmed |
Množinově-teoretické metody v teorii modulů |
title_sort |
množinově-teoretické metody v teorii modulů |
publishDate |
2010 |
url |
http://www.nusl.cz/ntk/nusl-299667 |
work_keys_str_mv |
AT sarochjan mnozinoveteoretickemetodyvteoriimodulu AT sarochjan settheoreticmethodsinthetheoryofmodules |
_version_ |
1718800026584481792 |