Množinově-teoretické metody v teorii modulů

The thesis collects my actual contributions to the theory of cotorsion pairs, with closer attention paid to the application of set-theoretic methods in this area. It consists of an introduction and three papers with coauthors. The first two, already published, deal with the so-called Telescope Conje...

Full description

Bibliographic Details
Main Author: Šaroch, Jan
Other Authors: Trlifaj, Jan
Format: Doctoral Thesis
Language:English
Published: 2010
Online Access:http://www.nusl.cz/ntk/nusl-299667
id ndltd-nusl.cz-oai-invenio.nusl.cz-299667
record_format oai_dc
spelling ndltd-nusl.cz-oai-invenio.nusl.cz-2996672018-12-10T04:16:18Z Množinově-teoretické metody v teorii modulů Set-theoretic Methods in the Theory of Modules Šaroch, Jan Trlifaj, Jan Příhoda, Pavel Struengmann, Lutz The thesis collects my actual contributions to the theory of cotorsion pairs, with closer attention paid to the application of set-theoretic methods in this area. It consists of an introduction and three papers with coauthors. The first two, already published, deal with the so-called Telescope Conjecture for Module Categories. We prove here, for instance, that a hereditary cotorsion pair (A, B) with the class B closed under direct limits is generated by a set of countably presented modules. Moreover, if the class A is closed under direct limits too, then the pair (A, B) is cogenerated by a set of indecomposable pure-injective modules. In the third paper, we deal with the cotorsion pairs which provide us with non-trivial examples of abstract elementary classes (in the sense of Shelah). Then we study the class D of all 1-projective modules, proving e.g. that-regardless of the ring-it always forms a Kaplansky class. 2010 info:eu-repo/semantics/doctoralThesis http://www.nusl.cz/ntk/nusl-299667 eng info:eu-repo/semantics/restrictedAccess
collection NDLTD
language English
format Doctoral Thesis
sources NDLTD
description The thesis collects my actual contributions to the theory of cotorsion pairs, with closer attention paid to the application of set-theoretic methods in this area. It consists of an introduction and three papers with coauthors. The first two, already published, deal with the so-called Telescope Conjecture for Module Categories. We prove here, for instance, that a hereditary cotorsion pair (A, B) with the class B closed under direct limits is generated by a set of countably presented modules. Moreover, if the class A is closed under direct limits too, then the pair (A, B) is cogenerated by a set of indecomposable pure-injective modules. In the third paper, we deal with the cotorsion pairs which provide us with non-trivial examples of abstract elementary classes (in the sense of Shelah). Then we study the class D of all 1-projective modules, proving e.g. that-regardless of the ring-it always forms a Kaplansky class.
author2 Trlifaj, Jan
author_facet Trlifaj, Jan
Šaroch, Jan
author Šaroch, Jan
spellingShingle Šaroch, Jan
Množinově-teoretické metody v teorii modulů
author_sort Šaroch, Jan
title Množinově-teoretické metody v teorii modulů
title_short Množinově-teoretické metody v teorii modulů
title_full Množinově-teoretické metody v teorii modulů
title_fullStr Množinově-teoretické metody v teorii modulů
title_full_unstemmed Množinově-teoretické metody v teorii modulů
title_sort množinově-teoretické metody v teorii modulů
publishDate 2010
url http://www.nusl.cz/ntk/nusl-299667
work_keys_str_mv AT sarochjan mnozinoveteoretickemetodyvteoriimodulu
AT sarochjan settheoreticmethodsinthetheoryofmodules
_version_ 1718800026584481792