Summary: | Thanks to its sessile life strategy, the polarity of plant body reflects the polarity of single cells. The polarity is maintained by asymmetric distribution of various molecules downstream from extra and intracellular signals. Directional transport of auxin plays an important role in the pattern formation, morphogenesis, and directional growth responses. The positioning of PIN auxin efflux transporters has been shown to be crucial in the setting of auxin gradients. It is dependent on the plasma membrane deposition of membrane vesicles and their constitutive cycling between plasma membrane and endosomal space. Although some evidences support the idea of differential actin and microtubular cytoskeleton dependence of PIN protein trafficking, there is a significant lack of the information on the role of cytoskeleton in this process. In this paper we use combination of live cell imaging and immunofluorescence techniques to search for the molecular players of actin filaments (AFs) and proteins proteins associated with AFs in the mechanisms of endocytosis and directed PIN1 protein targeting. Seedlings of Arabidopsis thaliana carrying mutations in actin genes (ACT1, ACT2, ACT7, ACT11), Arp 2/3 complex genes (ARP2, ARP3, ARPC2, ARPC5), WAVE complex components genes (BRK1, NAP1, SRA1) and actin monomer...
|