Nové integrální formule v hyperkomplexní analýze

Title: New Integral Formulae in Hypercomplex Analysis Author: Mgr. Martin Sikora Department: Mathematical Institute of Charles University Supervisor: prof. RNDr. Vladimír Souček, DrSc., MÚ UK Supervisor's e-mail address: soucek@karlin.mff.cuni.cz Abstract: The Dirac equation for Clifford algebr...

Full description

Bibliographic Details
Main Author: Sikora, Martin
Other Authors: Souček, Vladimír
Format: Doctoral Thesis
Language:English
Published: 2010
Online Access:http://www.nusl.cz/ntk/nusl-296112
id ndltd-nusl.cz-oai-invenio.nusl.cz-296112
record_format oai_dc
spelling ndltd-nusl.cz-oai-invenio.nusl.cz-2961122018-12-10T04:16:17Z Nové integrální formule v hyperkomplexní analýze New Integral Formulae in Hypercomplex Analysis Sikora, Martin Souček, Vladimír Krýsl, Svatopluk Vanžura, Jiří Title: New Integral Formulae in Hypercomplex Analysis Author: Mgr. Martin Sikora Department: Mathematical Institute of Charles University Supervisor: prof. RNDr. Vladimír Souček, DrSc., MÚ UK Supervisor's e-mail address: soucek@karlin.mff.cuni.cz Abstract: The Dirac equation for Clifford algebra-valued functions on the even-dimensional Minkowski space can be understood as a hyperbolic sys- tem of partial differential equations. We show how to reconstruct the solution from initial data given on the upper sheet of the hyperboloid. In particular, we derive an integral formula which expresses the value of a function in a chosen point as an integral over a compact cycle given by the intersection of the null cone with the upper sheet of the hyperboloid in the Minkowski space. We also treat the ultra-hyperbolic case where the Dirac equation gives the ultra-hyperbolic system of partial differential equations. An analogue of the second order Cauchy formula is proved for (n − 1)-vector-valued holo- morphic functions. It reconstructs values inside a bounded domain in the 2n-dimensional complex space by integrating over the characteristic boun- dary of the domain. 1 2010 info:eu-repo/semantics/doctoralThesis http://www.nusl.cz/ntk/nusl-296112 eng info:eu-repo/semantics/restrictedAccess
collection NDLTD
language English
format Doctoral Thesis
sources NDLTD
description Title: New Integral Formulae in Hypercomplex Analysis Author: Mgr. Martin Sikora Department: Mathematical Institute of Charles University Supervisor: prof. RNDr. Vladimír Souček, DrSc., MÚ UK Supervisor's e-mail address: soucek@karlin.mff.cuni.cz Abstract: The Dirac equation for Clifford algebra-valued functions on the even-dimensional Minkowski space can be understood as a hyperbolic sys- tem of partial differential equations. We show how to reconstruct the solution from initial data given on the upper sheet of the hyperboloid. In particular, we derive an integral formula which expresses the value of a function in a chosen point as an integral over a compact cycle given by the intersection of the null cone with the upper sheet of the hyperboloid in the Minkowski space. We also treat the ultra-hyperbolic case where the Dirac equation gives the ultra-hyperbolic system of partial differential equations. An analogue of the second order Cauchy formula is proved for (n − 1)-vector-valued holo- morphic functions. It reconstructs values inside a bounded domain in the 2n-dimensional complex space by integrating over the characteristic boun- dary of the domain. 1
author2 Souček, Vladimír
author_facet Souček, Vladimír
Sikora, Martin
author Sikora, Martin
spellingShingle Sikora, Martin
Nové integrální formule v hyperkomplexní analýze
author_sort Sikora, Martin
title Nové integrální formule v hyperkomplexní analýze
title_short Nové integrální formule v hyperkomplexní analýze
title_full Nové integrální formule v hyperkomplexní analýze
title_fullStr Nové integrální formule v hyperkomplexní analýze
title_full_unstemmed Nové integrální formule v hyperkomplexní analýze
title_sort nové integrální formule v hyperkomplexní analýze
publishDate 2010
url http://www.nusl.cz/ntk/nusl-296112
work_keys_str_mv AT sikoramartin noveintegralniformulevhyperkomplexnianalyze
AT sikoramartin newintegralformulaeinhypercomplexanalysis
_version_ 1718800010361962496