Šíření zvukových vln ve stlačitelných tekutinách

In the present Thesis we study problems arising in the mathematical theory of propagation of the acoustic waves in compressible uids. In particular, we are interested in problems posed on unbounded or very large spatial domains, where the dispersive phenomena play an important role, and where the lo...

Full description

Bibliographic Details
Main Author: Vybulková, Lada
Other Authors: Bulíček, Miroslav
Format: Dissertation
Language:English
Published: 2010
Online Access:http://www.nusl.cz/ntk/nusl-286227
id ndltd-nusl.cz-oai-invenio.nusl.cz-286227
record_format oai_dc
spelling ndltd-nusl.cz-oai-invenio.nusl.cz-2862272017-06-27T04:41:10Z Šíření zvukových vln ve stlačitelných tekutinách Šíření zvukových vln ve stlačitelných tekutinách Bulíček, Miroslav Vybulková, Lada Feireisl, Eduard In the present Thesis we study problems arising in the mathematical theory of propagation of the acoustic waves in compressible uids. In particular, we are interested in problems posed on unbounded or very large spatial domains, where the dispersive phenomena play an important role, and where the local energy of the acoustic waves is likely to decay to zero. We occupy ourselves with problems of small Mach numbers. The latter property is crucial in the study of the incompressible limits, where it provides a rigorous justi cation of \acoustic ltering" amply used in numerical implementations, see [6]. We derive the equation describing the motion of acoustic waves in compressible uids and explore spectral properties of related linear operator. We search situations when its point spectrum is empty, because then we can prove, in the sense of the RAGE Theorem from [7], resp. [1], a decay of the local energy of the acoustic waves as Mach number tends to zero. 2010 info:eu-repo/semantics/masterThesis http://www.nusl.cz/ntk/nusl-286227 eng info:eu-repo/semantics/restrictedAccess
collection NDLTD
language English
format Dissertation
sources NDLTD
description In the present Thesis we study problems arising in the mathematical theory of propagation of the acoustic waves in compressible uids. In particular, we are interested in problems posed on unbounded or very large spatial domains, where the dispersive phenomena play an important role, and where the local energy of the acoustic waves is likely to decay to zero. We occupy ourselves with problems of small Mach numbers. The latter property is crucial in the study of the incompressible limits, where it provides a rigorous justi cation of \acoustic ltering" amply used in numerical implementations, see [6]. We derive the equation describing the motion of acoustic waves in compressible uids and explore spectral properties of related linear operator. We search situations when its point spectrum is empty, because then we can prove, in the sense of the RAGE Theorem from [7], resp. [1], a decay of the local energy of the acoustic waves as Mach number tends to zero.
author2 Bulíček, Miroslav
author_facet Bulíček, Miroslav
Vybulková, Lada
author Vybulková, Lada
spellingShingle Vybulková, Lada
Šíření zvukových vln ve stlačitelných tekutinách
author_sort Vybulková, Lada
title Šíření zvukových vln ve stlačitelných tekutinách
title_short Šíření zvukových vln ve stlačitelných tekutinách
title_full Šíření zvukových vln ve stlačitelných tekutinách
title_fullStr Šíření zvukových vln ve stlačitelných tekutinách
title_full_unstemmed Šíření zvukových vln ve stlačitelných tekutinách
title_sort šíření zvukových vln ve stlačitelných tekutinách
publishDate 2010
url http://www.nusl.cz/ntk/nusl-286227
work_keys_str_mv AT vybulkovalada sirenizvukovychvlnvestlacitelnychtekutinach
_version_ 1718469348246421504