Podmínky pro konvergenci restartované a rozšířené metody GMRES

The GMRES method is one of the most useful methods for solving a system of linear algebraic equations with nonsymmetric matrix. So on, many bounds for the residual norm have been derived, that can give us information about the convergence or possible stagnation of the method. A generalization of the...

Full description

Bibliographic Details
Main Author: Nádhera, David
Other Authors: Strakoš, Zdeněk
Format: Dissertation
Language:Czech
Published: 2009
Online Access:http://www.nusl.cz/ntk/nusl-282852
id ndltd-nusl.cz-oai-invenio.nusl.cz-282852
record_format oai_dc
spelling ndltd-nusl.cz-oai-invenio.nusl.cz-2828522017-06-27T04:40:58Z Podmínky pro konvergenci restartované a rozšířené metody GMRES Conditions for convergence of the restarted and augmented GMRES method Strakoš, Zdeněk Nádhera, David Zítko, Jan The GMRES method is one of the most useful methods for solving a system of linear algebraic equations with nonsymmetric matrix. So on, many bounds for the residual norm have been derived, that can give us information about the convergence or possible stagnation of the method. A generalization of the GMRES method is the augmented GMRES method. In this paper we will analyze the implementation of augmented GMRES method proposed by Morgan. In these consequences we will be interested in how precise harmonic Ritz vectors approximate the eigenvectors belonging to the smallest in magnitude eigenvalues. We generalize some previous results concerning the convergence of restarted GMRES method for the case of augmented GMRES method. This is the rst contribution of the work. Another main point will be numerical testing and comparing of the bounds for restarted and augmented GMRES and an attempt to state a criterion, when it is suitable to stop the improvement of augmenting vectors, i. e. apply the augmented GMRES method without additional computations. 2009 info:eu-repo/semantics/masterThesis http://www.nusl.cz/ntk/nusl-282852 cze info:eu-repo/semantics/restrictedAccess
collection NDLTD
language Czech
format Dissertation
sources NDLTD
description The GMRES method is one of the most useful methods for solving a system of linear algebraic equations with nonsymmetric matrix. So on, many bounds for the residual norm have been derived, that can give us information about the convergence or possible stagnation of the method. A generalization of the GMRES method is the augmented GMRES method. In this paper we will analyze the implementation of augmented GMRES method proposed by Morgan. In these consequences we will be interested in how precise harmonic Ritz vectors approximate the eigenvectors belonging to the smallest in magnitude eigenvalues. We generalize some previous results concerning the convergence of restarted GMRES method for the case of augmented GMRES method. This is the rst contribution of the work. Another main point will be numerical testing and comparing of the bounds for restarted and augmented GMRES and an attempt to state a criterion, when it is suitable to stop the improvement of augmenting vectors, i. e. apply the augmented GMRES method without additional computations.
author2 Strakoš, Zdeněk
author_facet Strakoš, Zdeněk
Nádhera, David
author Nádhera, David
spellingShingle Nádhera, David
Podmínky pro konvergenci restartované a rozšířené metody GMRES
author_sort Nádhera, David
title Podmínky pro konvergenci restartované a rozšířené metody GMRES
title_short Podmínky pro konvergenci restartované a rozšířené metody GMRES
title_full Podmínky pro konvergenci restartované a rozšířené metody GMRES
title_fullStr Podmínky pro konvergenci restartované a rozšířené metody GMRES
title_full_unstemmed Podmínky pro konvergenci restartované a rozšířené metody GMRES
title_sort podmínky pro konvergenci restartované a rozšířené metody gmres
publishDate 2009
url http://www.nusl.cz/ntk/nusl-282852
work_keys_str_mv AT nadheradavid podminkyprokonvergencirestartovanearozsirenemetodygmres
AT nadheradavid conditionsforconvergenceoftherestartedandaugmentedgmresmethod
_version_ 1718469182725554176