Využití kmenových buněk a jejich in vivo zobrazování na modelech poranění mozku a míchy

Magnetic resonance imaging (MRI) provides a useful noninvasive method to study the long-term migration and fate of transplanted stem cells in the central nervous system in vivo. Grafted adult as well as embryonic stem cells (ESCs) labeled with superparamagnetic nanoparticles survive in the host orga...

Full description

Bibliographic Details
Main Author: Glogarová, Kateřina
Other Authors: Syková, Eva
Format: Doctoral Thesis
Language:Czech
Published: 2006
Online Access:http://www.nusl.cz/ntk/nusl-268623
Description
Summary:Magnetic resonance imaging (MRI) provides a useful noninvasive method to study the long-term migration and fate of transplanted stem cells in the central nervous system in vivo. Grafted adult as well as embryonic stem cells (ESCs) labeled with superparamagnetic nanoparticles survive in the host organism and migrate preferentially into a lesion site, where they populate the damaged nervous tissue. The migration is not affected by the route of administration; the lesion is populated with the same number of cells after intracerebral grafting as after intravenous injection. Less than 3 % of transplanted mesenchymal stem cells (MSCs) in a cortical photochemical lesion differentiated into neurons and none into astrocytes, while most ESCs (70 %) differentiated into astrocytes and only 5 % into neurons. The intravenous injection of MSCs or of the mononuclear fraction of the bone marrow, which includes hematopoietic and nonhematopoietic stem cells, progenitors and lymphocytes (BMCs), as well as the mobilization of endogenous BMCs with G-CSF (granulocyte colony stimulating factor) significantly improved the recovery of hind limb motor function and sensitivity in rats with a spinal cord compression lesion and significantly increased the spared white matter volume in the center of the lesion. The recovery was most...