Full nonlinear simulation of helicopter coupled rotor-fuselage motion using MATLAB Symbolic processor and dynamic simulation

This thesis formulates the full nonlinear equations of motion for determining the stability of helicopter coupled rotor-fuselage motion utilizing MATLAB(registered)'s Symbolic Math Toolbox. Using the extended symbolic processor toolbox, the goal of this work was to eliminate the time consuming...

Full description

Bibliographic Details
Main Author: Weissenfels, Robert D.
Other Authors: Wood, E. Roberts
Language:en_US
Published: Monterey, California. Naval Postgraduate School 2012
Online Access:http://handle.dtic.mil/100.2/ADA377881
http://hdl.handle.net/10945/9390
id ndltd-nps.edu-oai-calhoun.nps.edu-10945-9390
record_format oai_dc
spelling ndltd-nps.edu-oai-calhoun.nps.edu-10945-93902014-11-27T16:08:17Z Full nonlinear simulation of helicopter coupled rotor-fuselage motion using MATLAB Symbolic processor and dynamic simulation Weissenfels, Robert D. Wood, E. Roberts King, Robert L. This thesis formulates the full nonlinear equations of motion for determining the stability of helicopter coupled rotor-fuselage motion utilizing MATLAB(registered)'s Symbolic Math Toolbox. Using the extended symbolic processor toolbox, the goal of this work was to eliminate the time consuming process of convening Fortran or C code generated by the symbolic processor, MAPLE(registered) into a MATLAB(registered) useable format where it is further incorporated into an S-function' to be used in the dynamic simulation environment. The formulation of the equations of motion utilized in this process is unique in that it uses the complete set of nonlinear terms in the equations of motions without utilizing ordering schemes, small angle assumptions, linearizing techniques, or other simplifying assumptions. After derivation, the equations of motion are numerically integrated using the dynamic simulation software SIMULINK(registered) and a time history plot is generated of blade and fuselage motion. The equations of motion are regenerated with each time step allowing the adjustment of characteristic structural, blade and dampening properties. These time traces can be used to explore the effects of damping nonlinearities, structural nonlinearities, active control, individual blade control, and damper failure on ground resonance. 2012-08-09T19:29:06Z 2012-08-09T19:29:06Z 2000-03 Thesis http://handle.dtic.mil/100.2/ADA377881 http://hdl.handle.net/10945/9390 en_US Approved for public release, distribution unlimited. Monterey, California. Naval Postgraduate School
collection NDLTD
language en_US
sources NDLTD
description This thesis formulates the full nonlinear equations of motion for determining the stability of helicopter coupled rotor-fuselage motion utilizing MATLAB(registered)'s Symbolic Math Toolbox. Using the extended symbolic processor toolbox, the goal of this work was to eliminate the time consuming process of convening Fortran or C code generated by the symbolic processor, MAPLE(registered) into a MATLAB(registered) useable format where it is further incorporated into an S-function' to be used in the dynamic simulation environment. The formulation of the equations of motion utilized in this process is unique in that it uses the complete set of nonlinear terms in the equations of motions without utilizing ordering schemes, small angle assumptions, linearizing techniques, or other simplifying assumptions. After derivation, the equations of motion are numerically integrated using the dynamic simulation software SIMULINK(registered) and a time history plot is generated of blade and fuselage motion. The equations of motion are regenerated with each time step allowing the adjustment of characteristic structural, blade and dampening properties. These time traces can be used to explore the effects of damping nonlinearities, structural nonlinearities, active control, individual blade control, and damper failure on ground resonance.
author2 Wood, E. Roberts
author_facet Wood, E. Roberts
Weissenfels, Robert D.
author Weissenfels, Robert D.
spellingShingle Weissenfels, Robert D.
Full nonlinear simulation of helicopter coupled rotor-fuselage motion using MATLAB Symbolic processor and dynamic simulation
author_sort Weissenfels, Robert D.
title Full nonlinear simulation of helicopter coupled rotor-fuselage motion using MATLAB Symbolic processor and dynamic simulation
title_short Full nonlinear simulation of helicopter coupled rotor-fuselage motion using MATLAB Symbolic processor and dynamic simulation
title_full Full nonlinear simulation of helicopter coupled rotor-fuselage motion using MATLAB Symbolic processor and dynamic simulation
title_fullStr Full nonlinear simulation of helicopter coupled rotor-fuselage motion using MATLAB Symbolic processor and dynamic simulation
title_full_unstemmed Full nonlinear simulation of helicopter coupled rotor-fuselage motion using MATLAB Symbolic processor and dynamic simulation
title_sort full nonlinear simulation of helicopter coupled rotor-fuselage motion using matlab symbolic processor and dynamic simulation
publisher Monterey, California. Naval Postgraduate School
publishDate 2012
url http://handle.dtic.mil/100.2/ADA377881
http://hdl.handle.net/10945/9390
work_keys_str_mv AT weissenfelsrobertd fullnonlinearsimulationofhelicoptercoupledrotorfuselagemotionusingmatlabsymbolicprocessoranddynamicsimulation
_version_ 1716721345072463872