Summary: | Interest in accurate detection and targeting of aggressor missiles has received considerable interest with the national priority of developing a missile defense system. Understanding the thermal signatures of the exhaust plumes of such missiles is key to accomplishing that mission. Before signature models can be precisely developed for specific rockets, the radiation of the molecular or combustion species within those plumes must be accurately predicted. A combination translation / rotation scanning diagnostic technique has been developed to map the combustion species of a rocket plume and characterize its radiation properties. Using new infrared spectrometer and fiber optic cable technology to transmit the signal spectrum of interest, the custom designed mechanism can sweep through two dimensions of a steady-state rocket exhaust. A glow bar, or blackbody simulator, is shuttered on the opposite side of the plume, allowing the spectrometer to measure both the emission and absorption spectra. This thesis demonstrated the first time use of fiber optic cable to transmit infrared emission / absorption (E/A) spectra from a rocket plume to an infrared detector. This new fiber optic configuration allows for rapid translation and rotation around the rocket plume, establishing the capability for rapid spatial characterization of the combustion species present. Experimental results may then be compared to DoD rocket plume model predictions to highlight areas for improvement.
|