Summary: | Approved for public release; distribution is unlimited. === The input impedance of an antenna is highly dependent on the frequency range in which it operates. For an electrically small antenna to operate in a broad frequency range, the antenna must be properly matched. This thesis presents the design of a matching network for a 1-meter monopole antenna, operating over 30-90 MHz using the real frequency method (RFM). It outlines the mathematical steps needed to determine the equalizer function, which ultimately leads to the circuit design. The goal of the RFM, given the real frequency data, is to optimize the Transducer Power Gain (TPG), and minimize the reflection coefficient or power lost due to the impedance mismatch. Complete design including network realization is given. However, no experimental results are presented.
|