Summary: | The importance of Unmanned Aircraft Systems (UAS) to warfighters has been growing. Each loss (regardless of whether the entire UAS or parts of it) has become more expensive and unaffordable in both an operational and monetary sense. An unmanned aircraft (UA) loss may mean that critical missions cannot be performed and millions of dollars of investments on the UA lost. As most existing UAS were designed to be inexpensive and expendable, there is a need to enhance their combat survivability. Combat survivability is the capability of UAS to avoid or withstand a man-made hostile environment. This thesis explored how to enhance the combat survivability of existing UAS. Potential survivability enhancement options are identified. These options include changes in tactics, improving the situation awareness of the operator, equipping the UA with the capability to counter an incoming threat, improving the payload performance, improving resistance of the data link to jamming. The technology behind these options as well as the favorable and unfavorable factors of the options are studied and discussed. This thesis also proposed a process for selecting the "best" solution from survivability enhancement alternatives. This thesis used systems engineering methodology to enhance the survivability of existing UAS.
|