A Species-Conserving Genetic Algorithm for Multimodal Optimization

The problem of multimodal functional optimization has been addressed by much research producing many different search techniques. Niche Genetic Algorithms is one area that has attempted to solve this problem. Many Niche Genetic Algorithms use some type of radius. When multiple optima occur within th...

Full description

Bibliographic Details
Main Author: Brown, Michael Scott
Format: Others
Published: NSUWorks 2010
Subjects:
Online Access:http://nsuworks.nova.edu/gscis_etd/104
http://nsuworks.nova.edu/cgi/viewcontent.cgi?article=1103&context=gscis_etd
id ndltd-nova.edu-oai-nsuworks.nova.edu-gscis_etd-1103
record_format oai_dc
spelling ndltd-nova.edu-oai-nsuworks.nova.edu-gscis_etd-11032016-06-15T04:04:25Z A Species-Conserving Genetic Algorithm for Multimodal Optimization Brown, Michael Scott The problem of multimodal functional optimization has been addressed by much research producing many different search techniques. Niche Genetic Algorithms is one area that has attempted to solve this problem. Many Niche Genetic Algorithms use some type of radius. When multiple optima occur within the radius, these algorithms have a difficult time locating them. Problems that have arbitrarily close optima create a greater problem. This paper presents a new Niche Genetic Algorithm framework called Dynamic-radius Species-conserving Genetic Algorithm. This new framework extends existing Genetic Algorithm research. This new framework enhances an existing Niche Genetic Algorithm in two ways. As the name implies the radius of the algorithm varies during execution. A uniform radius can cause issues if it is not set correctly during initialization. A dynamic radius compensates for these issues. The framework does not attempt to locate all of the optima in a single pass. It attempts to find some optima and then uses a tabu list to exclude those areas of the domain for future iterations. To exclude these previously located optima, the framework uses a fitness sharing approach and a seed exclusion approach. This new framework addresses many areas of difficulty in current multimodal functional optimization research. This research used the experimental research methodology. A series of classic benchmark functional optimization problems were used to compare this framework to other algorithms. These other algorithms represented classic and current Niche Genetic Algorithms. Results from this research show that this new framework does very well in locating optima in a variety of benchmark functions. In functions that have arbitrarily close optima, the framework outperforms other algorithms. Compared to other Niche Genetic Algorithms the framework does equally well in locating optima that are not arbitrarily close. Results indicate that varying the radius during execution and the use of a tabu list assists in solving functional optimization problems for continuous functions that have arbitrarily close optima. 2010-01-01T08:00:00Z text application/pdf http://nsuworks.nova.edu/gscis_etd/104 http://nsuworks.nova.edu/cgi/viewcontent.cgi?article=1103&context=gscis_etd CEC Theses and Dissertations NSUWorks Algorithms Functional Genetic Niche Optimization Computer Sciences
collection NDLTD
format Others
sources NDLTD
topic Algorithms
Functional
Genetic
Niche
Optimization
Computer Sciences
spellingShingle Algorithms
Functional
Genetic
Niche
Optimization
Computer Sciences
Brown, Michael Scott
A Species-Conserving Genetic Algorithm for Multimodal Optimization
description The problem of multimodal functional optimization has been addressed by much research producing many different search techniques. Niche Genetic Algorithms is one area that has attempted to solve this problem. Many Niche Genetic Algorithms use some type of radius. When multiple optima occur within the radius, these algorithms have a difficult time locating them. Problems that have arbitrarily close optima create a greater problem. This paper presents a new Niche Genetic Algorithm framework called Dynamic-radius Species-conserving Genetic Algorithm. This new framework extends existing Genetic Algorithm research. This new framework enhances an existing Niche Genetic Algorithm in two ways. As the name implies the radius of the algorithm varies during execution. A uniform radius can cause issues if it is not set correctly during initialization. A dynamic radius compensates for these issues. The framework does not attempt to locate all of the optima in a single pass. It attempts to find some optima and then uses a tabu list to exclude those areas of the domain for future iterations. To exclude these previously located optima, the framework uses a fitness sharing approach and a seed exclusion approach. This new framework addresses many areas of difficulty in current multimodal functional optimization research. This research used the experimental research methodology. A series of classic benchmark functional optimization problems were used to compare this framework to other algorithms. These other algorithms represented classic and current Niche Genetic Algorithms. Results from this research show that this new framework does very well in locating optima in a variety of benchmark functions. In functions that have arbitrarily close optima, the framework outperforms other algorithms. Compared to other Niche Genetic Algorithms the framework does equally well in locating optima that are not arbitrarily close. Results indicate that varying the radius during execution and the use of a tabu list assists in solving functional optimization problems for continuous functions that have arbitrarily close optima.
author Brown, Michael Scott
author_facet Brown, Michael Scott
author_sort Brown, Michael Scott
title A Species-Conserving Genetic Algorithm for Multimodal Optimization
title_short A Species-Conserving Genetic Algorithm for Multimodal Optimization
title_full A Species-Conserving Genetic Algorithm for Multimodal Optimization
title_fullStr A Species-Conserving Genetic Algorithm for Multimodal Optimization
title_full_unstemmed A Species-Conserving Genetic Algorithm for Multimodal Optimization
title_sort species-conserving genetic algorithm for multimodal optimization
publisher NSUWorks
publishDate 2010
url http://nsuworks.nova.edu/gscis_etd/104
http://nsuworks.nova.edu/cgi/viewcontent.cgi?article=1103&context=gscis_etd
work_keys_str_mv AT brownmichaelscott aspeciesconservinggeneticalgorithmformultimodaloptimization
AT brownmichaelscott speciesconservinggeneticalgorithmformultimodaloptimization
_version_ 1718304753061986304