Summary: | A dissertation submitted to the Faculty of Health Sciences, University of the Witwatersrand, Johannesburg,
in fulfilment of the requirements for the degree of Master of Science (Medicine) in Human Genetics === Maintaining suitable bone health is emerging as a serious point of concern worldwide, as the prevalence of skeletal disorders threatens to reach unmanageable proportions. Despite unfavourable environmental factors, black South Africans demonstrate elevated bone mass, especially at the femoral neck, when compared to whites. Genetic factors are thought to mediate this effect, which may have clinical or therapeutic value. Using a candidate gene approach, this study investigated associations of six candidate genes (ESR1, TNFRSF11A, TNFRSF11B, TNFSF11, SOST and SPP1) with bone mineral content amongst pre-pubertal black South African children that formed part of the longitudinal Birth to Twenty cohort. The GoldenGate genotyping assay with VeraCode microbeads was used to genotype 151 black children at 366 polymorphic loci, including 112 previously associated and 254 tagging SNPs. A linear regression approach was implemented to highlight significant associations whilst adjusting for height, weight, sex and bone area. Twenty seven markers (8 previously associated and 19 tag SNPs; P <0.05) were found to link to either femoral neck (18) or lumbar spine (9) BMC. These signals derived from three genes, namely ESR1 (17), TNFRSF11B (9) and SPP1 (1). One marker (rs2485209) maintained its association with the femoral neck after correction for multiple testing (P = 0.038). These results fully support the existence of a strong genetic effect acting at the femoral neck in African ancestry individuals. Tagging SNP signals suggest the presence of a number of population specific variants that require further investigation. Combined, these markers may help to account for increased bone mass amongst black South Africans, when adjusted for covariates.
|