An experimental and numerical study of heat transfer augmentation near the entrance to a film cooling hole
Developments regarding internal cooling techniques have allowed the operation of modern gas turbine engines at turbine inlet temperatures which exceed the metallurgical capability of the turbine blade. This has allowed the operation of engines at a higher thermal efficiency and lower specific fuel c...
Main Author: | |
---|---|
Other Authors: | |
Published: |
2013
|
Subjects: | |
Online Access: | http://hdl.handle.net/2263/27590 http://upetd.up.ac.za/thesis/available/etd-08272008-163851/ |
id |
ndltd-netd.ac.za-oai-union.ndltd.org-up-oai-repository.up.ac.za-2263-27590 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-netd.ac.za-oai-union.ndltd.org-up-oai-repository.up.ac.za-2263-275902017-07-20T04:11:20Z An experimental and numerical study of heat transfer augmentation near the entrance to a film cooling hole Scheepers, Gerard Mr R M Morris Prof J A Visser gerard@qfin.net Coolant extraction Computational fluid dynamics Suction ratio Heat transfer enhancement Turbine blade Film-cooling Extraction angle Internal cooling Extraction hole Augmentation UCTD Developments regarding internal cooling techniques have allowed the operation of modern gas turbine engines at turbine inlet temperatures which exceed the metallurgical capability of the turbine blade. This has allowed the operation of engines at a higher thermal efficiency and lower specific fuel consumption. Modern turbine blade-cooling techniques rely on external film cooling to protect the outer surface of the blade from the hot gas path and internal cooling to remove thermal energy from the blade. Optimization of coolant performance and blade-life estimation require knowledge regarding the influence of cooling application on the blade inner and outer surface heat transfer. The following study describes a combined experimental and computational study of heat transfer augmentation near the entrance to a film-cooling hole. Steady-state heat transfer results were acquired by using a transient measurement technique in an 80 x actual rectangular channel, representing an internal cooling channel of a turbine blade. Platinum thin-film gauges were used to measure the inner surface heat transfer augmentation as a result of thermal boundary layer renewal and impingement near the entrance of a film-cooling hole. Measurements were taken at various suction ratios, extraction angles and wall temperature ratios with a main duct Reynolds number of 25×103. A numerical technique, based on the resolution of the unsteady conduction equation, using a Crank-Nicholson scheme, was used to obtain the surface heat flux from the measured surface temperature history. Computational data was generated with the use of a commercial CFD solver. Dissertation (MEng)--University of Pretoria, 2008. Mechanical and Aeronautical Engineering unrestricted 2013-09-07T11:49:12Z 2008-09-19 2013-09-07T11:49:12Z 2008-04-18 2008-09-19 2008-08-27 Dissertation http://hdl.handle.net/2263/27590 a 2007 E1066/gm http://upetd.up.ac.za/thesis/available/etd-08272008-163851/ © University of Pretoria 2007 E1066/ |
collection |
NDLTD |
sources |
NDLTD |
topic |
Coolant extraction Computational fluid dynamics Suction ratio Heat transfer enhancement Turbine blade Film-cooling Extraction angle Internal cooling Extraction hole Augmentation UCTD |
spellingShingle |
Coolant extraction Computational fluid dynamics Suction ratio Heat transfer enhancement Turbine blade Film-cooling Extraction angle Internal cooling Extraction hole Augmentation UCTD Scheepers, Gerard An experimental and numerical study of heat transfer augmentation near the entrance to a film cooling hole |
description |
Developments regarding internal cooling techniques have allowed the operation of modern gas turbine engines at turbine inlet temperatures which exceed the metallurgical capability of the turbine blade. This has allowed the operation of engines at a higher thermal efficiency and lower specific fuel consumption. Modern turbine blade-cooling techniques rely on external film cooling to protect the outer surface of the blade from the hot gas path and internal cooling to remove thermal energy from the blade. Optimization of coolant performance and blade-life estimation require knowledge regarding the influence of cooling application on the blade inner and outer surface heat transfer. The following study describes a combined experimental and computational study of heat transfer augmentation near the entrance to a film-cooling hole. Steady-state heat transfer results were acquired by using a transient measurement technique in an 80 x actual rectangular channel, representing an internal cooling channel of a turbine blade. Platinum thin-film gauges were used to measure the inner surface heat transfer augmentation as a result of thermal boundary layer renewal and impingement near the entrance of a film-cooling hole. Measurements were taken at various suction ratios, extraction angles and wall temperature ratios with a main duct Reynolds number of 25×103. A numerical technique, based on the resolution of the unsteady conduction equation, using a Crank-Nicholson scheme, was used to obtain the surface heat flux from the measured surface temperature history. Computational data was generated with the use of a commercial CFD solver. === Dissertation (MEng)--University of Pretoria, 2008. === Mechanical and Aeronautical Engineering === unrestricted |
author2 |
Mr R M Morris |
author_facet |
Mr R M Morris Scheepers, Gerard |
author |
Scheepers, Gerard |
author_sort |
Scheepers, Gerard |
title |
An experimental and numerical study of heat transfer augmentation near the entrance to a film cooling hole |
title_short |
An experimental and numerical study of heat transfer augmentation near the entrance to a film cooling hole |
title_full |
An experimental and numerical study of heat transfer augmentation near the entrance to a film cooling hole |
title_fullStr |
An experimental and numerical study of heat transfer augmentation near the entrance to a film cooling hole |
title_full_unstemmed |
An experimental and numerical study of heat transfer augmentation near the entrance to a film cooling hole |
title_sort |
experimental and numerical study of heat transfer augmentation near the entrance to a film cooling hole |
publishDate |
2013 |
url |
http://hdl.handle.net/2263/27590 http://upetd.up.ac.za/thesis/available/etd-08272008-163851/ |
work_keys_str_mv |
AT scheepersgerard anexperimentalandnumericalstudyofheattransferaugmentationneartheentrancetoafilmcoolinghole AT scheepersgerard experimentalandnumericalstudyofheattransferaugmentationneartheentrancetoafilmcoolinghole |
_version_ |
1718498637866074112 |