Siloxyl and Hydroxyl functionalized polymers by atom transfer radical polymerization

The syntheses of siloxyl and hydroxyl chain end functionalized polystyrene and poly(methyl methacrylate) by Atom Transfer Radical Polymerization (ATRP) were effected by the following methods: (a) α-Siloxyl functionalized polymers were prepared in quantitative yields via a one-pot ATRP synthesis...

Full description

Bibliographic Details
Main Author: Mputumana, Nomfusi Augusta
Other Authors: Summers, G.J. (Prof.)
Language:en
Published: 2011
Online Access:http://hdl.handle.net/10500/3927
id ndltd-netd.ac.za-oai-union.ndltd.org-unisa-oai-umkn-dsp01.int.unisa.ac.za-10500-3927
record_format oai_dc
spelling ndltd-netd.ac.za-oai-union.ndltd.org-unisa-oai-umkn-dsp01.int.unisa.ac.za-10500-39272016-04-16T04:08:04Z Siloxyl and Hydroxyl functionalized polymers by atom transfer radical polymerization Mputumana, Nomfusi Augusta Summers, G.J. (Prof.) The syntheses of siloxyl and hydroxyl chain end functionalized polystyrene and poly(methyl methacrylate) by Atom Transfer Radical Polymerization (ATRP) were effected by the following methods: (a) α-Siloxyl functionalized polymers were prepared in quantitative yields via a one-pot ATRP synthesis method for the polymerization of styrene or methyl methacrylate using a new siloxyl functionalized initiator adduct, formed in situ by the reaction of (1-bromoethyl)benzene with 1-(4-t-butyldimethylsiloxyphenyl)-1- phenylethylene in the presence of CuBr/bpy or CuBr/PMDETA as catalysts in diphenyl ether at 90 -110 oC. The polymerizations proceeded via controlled living radical polymerization methods and α-siloxyl functionalized polymers with predictable number average molecular weights (Mn = 1.8 x 103 - 17.40 x 103 g/mol), narrow molecular weight distributions (Mw /Mn = 1.03 - 1.41) and regiospecificity of the functional groups were obtained in quantitative yields. Similarly, the one-pot ATRP synthesis method for the preparation of α-bis(siloxyl) functionalized polymers were effected by the initiation of styrene or methyl methacrylate polymerization with a new bis(siloxyl) functionalized initiator adduct, formed by the in situ reaction of 1,1-bis(4-t-butyldimethylsiloxylphenyl)- ethylene with (1-bromoethyl)benzene in the presence of CuBr/bpy or CuBr/ PMDETA as catalytic systems in diphenyl ether at 90 -110 oC. Each polymerization reaction proceeded via a controlled living fashion to afford quantitative yields of the corresponding α-bis(siloxyl) functionalized polymers with predictable number average molecular weights (Mn = 1.7 X 103 - 15.00 x 103 g/mol), narrow molecular weight distributions (Mw /Mn = 1.03 - 1.35) and good control of chain end functionality. The acid catalyzed hydrolysis of α-siloxyl and α-bis(siloxyl) chain end functionalized polymers afforded the corresponding α-hydroxyl and α-bis(hydroxyl) chain end functionalized polymers, respectively. Polymerization kinetic data was employed to determine the controlled/living character of each ATRP reaction leading to the formation of different siloxyl functionalized chain end functionalized polymers. Polymerization kinetic measurements show that the polymerization follows first order rate kinetics with respect to monomer consumption and the number average molecular weight increases with percentage monomer conversion, resulting in the formation of polymers with narrow molecular weight distributions. Thin layer chromatography (TLC), 1H and 13C Nuclear Magnetic Resonance Spectrometry (NMR), Fourier Transform Infrared Spectroscopy (FTIR), Size Exclusion Chromatography (SEC), Gas Chromatography (GC) and non - aqueous titrations were used to determine the structures and purity of the siloxyl functionalized initiator precursors as well as the siloxyl and hydroxyl functionalized polymers. 2011-01-17T10:04:46Z 2011-01-17T10:04:46Z 2010-06 Thesis http://hdl.handle.net/10500/3927 en
collection NDLTD
language en
sources NDLTD
description The syntheses of siloxyl and hydroxyl chain end functionalized polystyrene and poly(methyl methacrylate) by Atom Transfer Radical Polymerization (ATRP) were effected by the following methods: (a) α-Siloxyl functionalized polymers were prepared in quantitative yields via a one-pot ATRP synthesis method for the polymerization of styrene or methyl methacrylate using a new siloxyl functionalized initiator adduct, formed in situ by the reaction of (1-bromoethyl)benzene with 1-(4-t-butyldimethylsiloxyphenyl)-1- phenylethylene in the presence of CuBr/bpy or CuBr/PMDETA as catalysts in diphenyl ether at 90 -110 oC. The polymerizations proceeded via controlled living radical polymerization methods and α-siloxyl functionalized polymers with predictable number average molecular weights (Mn = 1.8 x 103 - 17.40 x 103 g/mol), narrow molecular weight distributions (Mw /Mn = 1.03 - 1.41) and regiospecificity of the functional groups were obtained in quantitative yields. Similarly, the one-pot ATRP synthesis method for the preparation of α-bis(siloxyl) functionalized polymers were effected by the initiation of styrene or methyl methacrylate polymerization with a new bis(siloxyl) functionalized initiator adduct, formed by the in situ reaction of 1,1-bis(4-t-butyldimethylsiloxylphenyl)- ethylene with (1-bromoethyl)benzene in the presence of CuBr/bpy or CuBr/ PMDETA as catalytic systems in diphenyl ether at 90 -110 oC. Each polymerization reaction proceeded via a controlled living fashion to afford quantitative yields of the corresponding α-bis(siloxyl) functionalized polymers with predictable number average molecular weights (Mn = 1.7 X 103 - 15.00 x 103 g/mol), narrow molecular weight distributions (Mw /Mn = 1.03 - 1.35) and good control of chain end functionality. The acid catalyzed hydrolysis of α-siloxyl and α-bis(siloxyl) chain end functionalized polymers afforded the corresponding α-hydroxyl and α-bis(hydroxyl) chain end functionalized polymers, respectively. Polymerization kinetic data was employed to determine the controlled/living character of each ATRP reaction leading to the formation of different siloxyl functionalized chain end functionalized polymers. Polymerization kinetic measurements show that the polymerization follows first order rate kinetics with respect to monomer consumption and the number average molecular weight increases with percentage monomer conversion, resulting in the formation of polymers with narrow molecular weight distributions. Thin layer chromatography (TLC), 1H and 13C Nuclear Magnetic Resonance Spectrometry (NMR), Fourier Transform Infrared Spectroscopy (FTIR), Size Exclusion Chromatography (SEC), Gas Chromatography (GC) and non - aqueous titrations were used to determine the structures and purity of the siloxyl functionalized initiator precursors as well as the siloxyl and hydroxyl functionalized polymers.
author2 Summers, G.J. (Prof.)
author_facet Summers, G.J. (Prof.)
Mputumana, Nomfusi Augusta
author Mputumana, Nomfusi Augusta
spellingShingle Mputumana, Nomfusi Augusta
Siloxyl and Hydroxyl functionalized polymers by atom transfer radical polymerization
author_sort Mputumana, Nomfusi Augusta
title Siloxyl and Hydroxyl functionalized polymers by atom transfer radical polymerization
title_short Siloxyl and Hydroxyl functionalized polymers by atom transfer radical polymerization
title_full Siloxyl and Hydroxyl functionalized polymers by atom transfer radical polymerization
title_fullStr Siloxyl and Hydroxyl functionalized polymers by atom transfer radical polymerization
title_full_unstemmed Siloxyl and Hydroxyl functionalized polymers by atom transfer radical polymerization
title_sort siloxyl and hydroxyl functionalized polymers by atom transfer radical polymerization
publishDate 2011
url http://hdl.handle.net/10500/3927
work_keys_str_mv AT mputumananomfusiaugusta siloxylandhydroxylfunctionalizedpolymersbyatomtransferradicalpolymerization
_version_ 1718224207949594624