Quadri-dimensional approach for data analytics in mobile networks

The telecommunication market is growing at a very fast pace with the evolution of new technologies to support high speed throughput and the availability of a wide range of services and applications in the mobile networks. This has led to a need for communication service providers (CSPs) to shift the...

Full description

Bibliographic Details
Main Author: Minerve, Mampaka Maluambanzila
Other Authors: Sumbwanyambe. M.
Format: Others
Language:en
Published: 2019
Subjects:
QoS
QoE
SQM
CEM
ANN
Online Access:http://hdl.handle.net/10500/25882
id ndltd-netd.ac.za-oai-union.ndltd.org-unisa-oai-uir.unisa.ac.za-10500-25882
record_format oai_dc
spelling ndltd-netd.ac.za-oai-union.ndltd.org-unisa-oai-uir.unisa.ac.za-10500-258822019-10-30T04:07:26Z Quadri-dimensional approach for data analytics in mobile networks Minerve, Mampaka Maluambanzila Sumbwanyambe. M. Telecommunication Mobile networks Packet-Switched QoS QoE SQM CEM Root cause analysis Data analytics Big Data Machine learning Artificial intelligence ANN Deep learning 621.382 Network performance (Telecommunication) -- Reliability Big data Computer algorithms Data mining -- Computer programs Mobile computing Cell phone systems Mobile communication systems Wireless communication systems Reliability (Engineering) The telecommunication market is growing at a very fast pace with the evolution of new technologies to support high speed throughput and the availability of a wide range of services and applications in the mobile networks. This has led to a need for communication service providers (CSPs) to shift their focus from network elements monitoring towards services monitoring and subscribers’ satisfaction by introducing the service quality management (SQM) and the customer experience management (CEM) that require fast responses to reduce the time to find and solve network problems, to ensure efficiency and proactive maintenance, to improve the quality of service (QoS) and the quality of experience (QoE) of the subscribers. While both the SQM and the CEM demand multiple information from different interfaces, managing multiple data sources adds an extra layer of complexity with the collection of data. While several studies and researches have been conducted for data analytics in mobile networks, most of them did not consider analytics based on the four dimensions involved in the mobile networks environment which are the subscriber, the handset, the service and the network element with multiple interface correlation. The main objective of this research was to develop mobile network analytics models applied to the 3G packet-switched domain by analysing data from the radio network with the Iub interface and the core network with the Gn interface to provide a fast root cause analysis (RCA) approach considering the four dimensions involved in the mobile networks. This was achieved by using the latest computer engineering advancements which are Big Data platforms and data mining techniques through machine learning algorithms. Electrical and Mining Engineering M. Tech. (Electrical Engineering) 2019-10-21T05:35:51Z 2019-10-21T05:35:51Z 2018-10 Dissertation http://hdl.handle.net/10500/25882 en 1 online resource (xiv, 91 leaves) : color illustrations, color graphs application/pdf
collection NDLTD
language en
format Others
sources NDLTD
topic Telecommunication
Mobile networks
Packet-Switched
QoS
QoE
SQM
CEM
Root cause analysis
Data analytics
Big Data
Machine learning
Artificial intelligence
ANN
Deep learning
621.382
Network performance (Telecommunication) -- Reliability
Big data
Computer algorithms
Data mining -- Computer programs
Mobile computing
Cell phone systems
Mobile communication systems
Wireless communication systems
Reliability (Engineering)
spellingShingle Telecommunication
Mobile networks
Packet-Switched
QoS
QoE
SQM
CEM
Root cause analysis
Data analytics
Big Data
Machine learning
Artificial intelligence
ANN
Deep learning
621.382
Network performance (Telecommunication) -- Reliability
Big data
Computer algorithms
Data mining -- Computer programs
Mobile computing
Cell phone systems
Mobile communication systems
Wireless communication systems
Reliability (Engineering)
Minerve, Mampaka Maluambanzila
Quadri-dimensional approach for data analytics in mobile networks
description The telecommunication market is growing at a very fast pace with the evolution of new technologies to support high speed throughput and the availability of a wide range of services and applications in the mobile networks. This has led to a need for communication service providers (CSPs) to shift their focus from network elements monitoring towards services monitoring and subscribers’ satisfaction by introducing the service quality management (SQM) and the customer experience management (CEM) that require fast responses to reduce the time to find and solve network problems, to ensure efficiency and proactive maintenance, to improve the quality of service (QoS) and the quality of experience (QoE) of the subscribers. While both the SQM and the CEM demand multiple information from different interfaces, managing multiple data sources adds an extra layer of complexity with the collection of data. While several studies and researches have been conducted for data analytics in mobile networks, most of them did not consider analytics based on the four dimensions involved in the mobile networks environment which are the subscriber, the handset, the service and the network element with multiple interface correlation. The main objective of this research was to develop mobile network analytics models applied to the 3G packet-switched domain by analysing data from the radio network with the Iub interface and the core network with the Gn interface to provide a fast root cause analysis (RCA) approach considering the four dimensions involved in the mobile networks. This was achieved by using the latest computer engineering advancements which are Big Data platforms and data mining techniques through machine learning algorithms. === Electrical and Mining Engineering === M. Tech. (Electrical Engineering)
author2 Sumbwanyambe. M.
author_facet Sumbwanyambe. M.
Minerve, Mampaka Maluambanzila
author Minerve, Mampaka Maluambanzila
author_sort Minerve, Mampaka Maluambanzila
title Quadri-dimensional approach for data analytics in mobile networks
title_short Quadri-dimensional approach for data analytics in mobile networks
title_full Quadri-dimensional approach for data analytics in mobile networks
title_fullStr Quadri-dimensional approach for data analytics in mobile networks
title_full_unstemmed Quadri-dimensional approach for data analytics in mobile networks
title_sort quadri-dimensional approach for data analytics in mobile networks
publishDate 2019
url http://hdl.handle.net/10500/25882
work_keys_str_mv AT minervemampakamaluambanzila quadridimensionalapproachfordataanalyticsinmobilenetworks
_version_ 1719283779274539008