Phase equilibrium investigation of the water and acetonitrile solvent with heavy hydrocarbons.

Thermodynamics plays an important role for separation processes in chemical industries. Phase equilibrium is of special interest in chemical engineering as separation processes such as distillation and extraction involve phase contacting. The main focus of this research was the measurement of new ph...

Full description

Bibliographic Details
Main Author: Narasigadu, Caleb.
Other Authors: Ramjugernath, Deresh D.
Language:en
Published: 2010
Subjects:
Online Access:http://hdl.handle.net/10413/1539
id ndltd-netd.ac.za-oai-union.ndltd.org-ukzn-oai-http---researchspace.ukzn.ac.za-10413-1539
record_format oai_dc
spelling ndltd-netd.ac.za-oai-union.ndltd.org-ukzn-oai-http---researchspace.ukzn.ac.za-10413-15392014-02-08T03:48:56ZPhase equilibrium investigation of the water and acetonitrile solvent with heavy hydrocarbons.Narasigadu, Caleb.Phase rule and equilibrium.Theses--Chemical engineering.Hydrocarbons.Thermodynamics plays an important role for separation processes in chemical industries. Phase equilibrium is of special interest in chemical engineering as separation processes such as distillation and extraction involve phase contacting. The main focus of this research was the measurement of new phase equilibrium data for acetonitrile and water with heavy hydrocarbons that included: heptanoic acid, 1-nonanol, dodecane and 1-dodecene. Hence, binary vapour-liquid equilibrium (VLE), liquid-liquid equilibrium (LLE) and vapour-liquid-liquid equilibrium (VLLE) data were investigated. The VLE and VLLE data were measured with the modified apparatus of Raal (Raal and Miihlbauer, 1998). The modification, undertaken by Ndlovu (2005), enabled measurement for VLLE systems. Isothermal binary VLE data for the (nonanol + 1-dodecene) system at 403.15 K was measured and VLLE data for the systems (acetonitrile + 1-dodecene) at 343.15 K, and (nonanol + water) at 353.15 K were investigated. The LLE data were measured with the modified apparatus of Raal and Brouckaert (1992). The modification, introduced by Ndlovu (2005), improved thermal insulation and the sampling procedures. Binary LLE data for the systems (acetonitrile + 1-dodecene) at 1 atm and (water + 1-nonanol) at 1 atm were measured. Furthermore, ternary data at 323.15 K and 1 atm were also measured for the systems containing water + acetonitrile with the each of the following components: heptanoic acid, 1-nonanol, dodecane and 1-dodecene. The experimental VLE data were regressed using two different methods: the combined method and the direct method. For the combined method, the second virial coefficients were calculated from the methods of Pitzer and Curl (1957) and Tsonopoulos (1974). The activity coefficients were calculated using three local-composition based activity coefficients models: the model of Wilson (1964), the NRTL model of Renon and Prausnitz (1968) and the modified UNIQUAC model of Anderson and Prausnitz (1978). For the direct method, the equation of state of Stryjek and Vera (1986) and the alpha function of Twu et al. (1991) in the equation of state of Peng and Robinson (1976) were employed. In addition, the mixing rules of Wong and Sandler (1992) and Twu and Coon (1996) were utilised. Furthermore, the point test of Van Ness et al. (1973) and the direct test of Van Ness (1995) were employed to test the thermodynamic consistency of the experimental VLE data measured in this work. The experimental binary LLE data were regressed using the three-suffix Margules model, Van Laar (1910) model and the NRTL model of Renon and Prausnitz (1968) to obtain the temperature dependence of the model parameters. The experimental ternary LLE data were subjected to a two part correlation: the tie-line correlation and the binodal curve correlation. The tie-lines were correlated with the NRTL model of Renon and Prausnitz (1968) and the modified UNIQUAC model of Anderson and Prausnitz (1978). The binodal curves were correlated with the Hlavaty (1972) equation, B-density function equation of Letcher et al. (1989) and the log y equation of Letcher et al. (1986).Thesis (M.Sc.Eng.)-University of KwaZulu-Natal, Durban, 2006.Ramjugernath, Deresh D.Naidoo, Paramespri.Raal, Johan David.2010-10-29T13:52:17Z2010-10-29T13:52:17Z20062006Thesishttp://hdl.handle.net/10413/1539en
collection NDLTD
language en
sources NDLTD
topic Phase rule and equilibrium.
Theses--Chemical engineering.
Hydrocarbons.
spellingShingle Phase rule and equilibrium.
Theses--Chemical engineering.
Hydrocarbons.
Narasigadu, Caleb.
Phase equilibrium investigation of the water and acetonitrile solvent with heavy hydrocarbons.
description Thermodynamics plays an important role for separation processes in chemical industries. Phase equilibrium is of special interest in chemical engineering as separation processes such as distillation and extraction involve phase contacting. The main focus of this research was the measurement of new phase equilibrium data for acetonitrile and water with heavy hydrocarbons that included: heptanoic acid, 1-nonanol, dodecane and 1-dodecene. Hence, binary vapour-liquid equilibrium (VLE), liquid-liquid equilibrium (LLE) and vapour-liquid-liquid equilibrium (VLLE) data were investigated. The VLE and VLLE data were measured with the modified apparatus of Raal (Raal and Miihlbauer, 1998). The modification, undertaken by Ndlovu (2005), enabled measurement for VLLE systems. Isothermal binary VLE data for the (nonanol + 1-dodecene) system at 403.15 K was measured and VLLE data for the systems (acetonitrile + 1-dodecene) at 343.15 K, and (nonanol + water) at 353.15 K were investigated. The LLE data were measured with the modified apparatus of Raal and Brouckaert (1992). The modification, introduced by Ndlovu (2005), improved thermal insulation and the sampling procedures. Binary LLE data for the systems (acetonitrile + 1-dodecene) at 1 atm and (water + 1-nonanol) at 1 atm were measured. Furthermore, ternary data at 323.15 K and 1 atm were also measured for the systems containing water + acetonitrile with the each of the following components: heptanoic acid, 1-nonanol, dodecane and 1-dodecene. The experimental VLE data were regressed using two different methods: the combined method and the direct method. For the combined method, the second virial coefficients were calculated from the methods of Pitzer and Curl (1957) and Tsonopoulos (1974). The activity coefficients were calculated using three local-composition based activity coefficients models: the model of Wilson (1964), the NRTL model of Renon and Prausnitz (1968) and the modified UNIQUAC model of Anderson and Prausnitz (1978). For the direct method, the equation of state of Stryjek and Vera (1986) and the alpha function of Twu et al. (1991) in the equation of state of Peng and Robinson (1976) were employed. In addition, the mixing rules of Wong and Sandler (1992) and Twu and Coon (1996) were utilised. Furthermore, the point test of Van Ness et al. (1973) and the direct test of Van Ness (1995) were employed to test the thermodynamic consistency of the experimental VLE data measured in this work. The experimental binary LLE data were regressed using the three-suffix Margules model, Van Laar (1910) model and the NRTL model of Renon and Prausnitz (1968) to obtain the temperature dependence of the model parameters. The experimental ternary LLE data were subjected to a two part correlation: the tie-line correlation and the binodal curve correlation. The tie-lines were correlated with the NRTL model of Renon and Prausnitz (1968) and the modified UNIQUAC model of Anderson and Prausnitz (1978). The binodal curves were correlated with the Hlavaty (1972) equation, B-density function equation of Letcher et al. (1989) and the log y equation of Letcher et al. (1986). === Thesis (M.Sc.Eng.)-University of KwaZulu-Natal, Durban, 2006.
author2 Ramjugernath, Deresh D.
author_facet Ramjugernath, Deresh D.
Narasigadu, Caleb.
author Narasigadu, Caleb.
author_sort Narasigadu, Caleb.
title Phase equilibrium investigation of the water and acetonitrile solvent with heavy hydrocarbons.
title_short Phase equilibrium investigation of the water and acetonitrile solvent with heavy hydrocarbons.
title_full Phase equilibrium investigation of the water and acetonitrile solvent with heavy hydrocarbons.
title_fullStr Phase equilibrium investigation of the water and acetonitrile solvent with heavy hydrocarbons.
title_full_unstemmed Phase equilibrium investigation of the water and acetonitrile solvent with heavy hydrocarbons.
title_sort phase equilibrium investigation of the water and acetonitrile solvent with heavy hydrocarbons.
publishDate 2010
url http://hdl.handle.net/10413/1539
work_keys_str_mv AT narasigaducaleb phaseequilibriuminvestigationofthewaterandacetonitrilesolventwithheavyhydrocarbons
_version_ 1716635455656558592