A geometallurgical evaluation of the ores of the northern Kalahari manganese deposit, South Africa

D. Phil. === The Kalahari Manganese Deposit (KMD) is the largest of five erosional relics of the Hotazel Formation that are located near Kuruman in the Northern Cape Province of South Africa. Manganese ores are exploited from the lowermost of three manganiferous beds that are interbedded with banded...

Full description

Bibliographic Details
Published: 2010
Subjects:
Online Access:http://hdl.handle.net/10210/3223
id ndltd-netd.ac.za-oai-union.ndltd.org-uj-uj-6794
record_format oai_dc
spelling ndltd-netd.ac.za-oai-union.ndltd.org-uj-uj-67942016-08-16T03:59:34ZA geometallurgical evaluation of the ores of the northern Kalahari manganese deposit, South AfricaGeologyManganese oresKuruman (South Africa)D. Phil.The Kalahari Manganese Deposit (KMD) is the largest of five erosional relics of the Hotazel Formation that are located near Kuruman in the Northern Cape Province of South Africa. Manganese ores are exploited from the lowermost of three manganiferous beds that are interbedded with banded iron-formation (BIF) and hematite lutite, that together constitute the Hotazel Formation. Two major ore types have been delineated previously, viz. low grade braunite lutite of the Mamatwan-type, and high grade oxidic ores of the Wessels-type, with the latter spatially restricted to the northern KMD. Genesis of the ores was temporally distinct, with the Mamatwan-type ore considered as a sedimentary-diagenetic precursor to the hydrothermally altered Wessels-type ore. Drill core samples from the Nchwaning-Gloria area of the northern KMD were analysed, with the aim to better characterise ore genesis, with emphasis on ore alteration. A second part of the study aimed at the application of mineralogical and geochemical information to aspects of ore smelting for the production of Mn alloy for use in the steel industry. Methods employed were drill core logging, X-ray diffraction (XRD), petrography, electron probe microanalysis (EPMA), major and trace element (including REE) analysis (employing artificial neural networks for evaluation of elemental trends), and stable isotope (C and O) analysis. Significant effort was invested in method development for quantitative mineralogical modal analysis using Rietveld refinement of XRD data. The study shows that a number of ore types can be differentiated in the northern KMD on the basis of mineral assemblage, grade, texture and geochemical characteristics. The ores are broadly classified into least altered (LA), partially altered (PA) and advanced altered (AA) types. The LA ores are low grade (<40 wt%Mn) Mn lutites, with dolomite-group carbonate a significant component in addition to braunite. Serpentine is a ubiquitous trace mineral, and boron is a characteristic trace element hosted predominantly by braunite in these ores. Ores of the PA type comprise either braunite-hausmannite-calcite or hausmannite-calcite assemblages, are fine to coarse grained, and display intermediate Mn grades (40-45 wt%Mn). They exhibit a transitional trace element signature. Advanced altered ores may be classified into five different types, based on mineral assemblages that contain hausmannite and/or braunite as significant minerals. Carbonates occur predominantly in the form of calcite, present in minor to trace proportions. Textures vary from fine to very coarse grained, and high Mn grades (typically >45 wt%Mn), are recorded. Trace elements of significance include Zn, associated with hausmannite, B, associated with massive braunite and a number of trace minerals, and P, typically present in trace quantities of apatite. In terms of ore genesis, mineralogical, geochemical and geological considerations suggest that Mn (and Fe) originated from submarine hydrothermal vents, from which it travelled in hydrothermal plumes, prior to rapid deposition ~2.2 Ga ago. Diagenesis followed soon after deposition, through redox reactions involving organic matter and higher oxides of Mn to produce the braunite-carbonate assemblage primarily observed in LA ores. The carbonate:oxide ratio and nature of the carbonates varied slightly depending on fluctuations in organic matter flux to the sediment, as well as marine bicarbonate concentrations. Metamorphism, in relation to diagenesis and metasomatism, is poorly understood, but is perceived to have resulted in serpentine formation, as observed in LA and PA ores.2010-04-19T07:55:36ZThesisuj:6794http://hdl.handle.net/10210/3223
collection NDLTD
sources NDLTD
topic Geology
Manganese ores
Kuruman (South Africa)
spellingShingle Geology
Manganese ores
Kuruman (South Africa)
A geometallurgical evaluation of the ores of the northern Kalahari manganese deposit, South Africa
description D. Phil. === The Kalahari Manganese Deposit (KMD) is the largest of five erosional relics of the Hotazel Formation that are located near Kuruman in the Northern Cape Province of South Africa. Manganese ores are exploited from the lowermost of three manganiferous beds that are interbedded with banded iron-formation (BIF) and hematite lutite, that together constitute the Hotazel Formation. Two major ore types have been delineated previously, viz. low grade braunite lutite of the Mamatwan-type, and high grade oxidic ores of the Wessels-type, with the latter spatially restricted to the northern KMD. Genesis of the ores was temporally distinct, with the Mamatwan-type ore considered as a sedimentary-diagenetic precursor to the hydrothermally altered Wessels-type ore. Drill core samples from the Nchwaning-Gloria area of the northern KMD were analysed, with the aim to better characterise ore genesis, with emphasis on ore alteration. A second part of the study aimed at the application of mineralogical and geochemical information to aspects of ore smelting for the production of Mn alloy for use in the steel industry. Methods employed were drill core logging, X-ray diffraction (XRD), petrography, electron probe microanalysis (EPMA), major and trace element (including REE) analysis (employing artificial neural networks for evaluation of elemental trends), and stable isotope (C and O) analysis. Significant effort was invested in method development for quantitative mineralogical modal analysis using Rietveld refinement of XRD data. The study shows that a number of ore types can be differentiated in the northern KMD on the basis of mineral assemblage, grade, texture and geochemical characteristics. The ores are broadly classified into least altered (LA), partially altered (PA) and advanced altered (AA) types. The LA ores are low grade (<40 wt%Mn) Mn lutites, with dolomite-group carbonate a significant component in addition to braunite. Serpentine is a ubiquitous trace mineral, and boron is a characteristic trace element hosted predominantly by braunite in these ores. Ores of the PA type comprise either braunite-hausmannite-calcite or hausmannite-calcite assemblages, are fine to coarse grained, and display intermediate Mn grades (40-45 wt%Mn). They exhibit a transitional trace element signature. Advanced altered ores may be classified into five different types, based on mineral assemblages that contain hausmannite and/or braunite as significant minerals. Carbonates occur predominantly in the form of calcite, present in minor to trace proportions. Textures vary from fine to very coarse grained, and high Mn grades (typically >45 wt%Mn), are recorded. Trace elements of significance include Zn, associated with hausmannite, B, associated with massive braunite and a number of trace minerals, and P, typically present in trace quantities of apatite. In terms of ore genesis, mineralogical, geochemical and geological considerations suggest that Mn (and Fe) originated from submarine hydrothermal vents, from which it travelled in hydrothermal plumes, prior to rapid deposition ~2.2 Ga ago. Diagenesis followed soon after deposition, through redox reactions involving organic matter and higher oxides of Mn to produce the braunite-carbonate assemblage primarily observed in LA ores. The carbonate:oxide ratio and nature of the carbonates varied slightly depending on fluctuations in organic matter flux to the sediment, as well as marine bicarbonate concentrations. Metamorphism, in relation to diagenesis and metasomatism, is poorly understood, but is perceived to have resulted in serpentine formation, as observed in LA and PA ores.
title A geometallurgical evaluation of the ores of the northern Kalahari manganese deposit, South Africa
title_short A geometallurgical evaluation of the ores of the northern Kalahari manganese deposit, South Africa
title_full A geometallurgical evaluation of the ores of the northern Kalahari manganese deposit, South Africa
title_fullStr A geometallurgical evaluation of the ores of the northern Kalahari manganese deposit, South Africa
title_full_unstemmed A geometallurgical evaluation of the ores of the northern Kalahari manganese deposit, South Africa
title_sort geometallurgical evaluation of the ores of the northern kalahari manganese deposit, south africa
publishDate 2010
url http://hdl.handle.net/10210/3223
_version_ 1718377517218267136