Congruences on lattices (with application to amalgamation)
Bibliography: pages 124-128. === We present some aspects of congruences on lattices. An overview of general results on congruence distributive algebras is given in Chapter 1 and in Chapter 2 we examine weak projections; including Dilworth's characterization of congruences on lattices and a fini...
Main Author: | |
---|---|
Other Authors: | |
Format: | Dissertation |
Language: | English |
Published: |
University of Cape Town
2016
|
Subjects: | |
Online Access: | http://hdl.handle.net/11427/17442 |
Summary: | Bibliography: pages 124-128. === We present some aspects of congruences on lattices. An overview of general results on congruence distributive algebras is given in Chapter 1 and in Chapter 2 we examine weak projections; including Dilworth's characterization of congruences on lattices and a finite basis theorem for lattices. The outstanding problem of whether congruence lattices of lattices characterize distributive algebraic lattices is discussed in Chapter 3 and we look at some of the partial results known to date. The last chapter (Chapter 6) characterizes the amalgamation class of a variety B generated by a B-lattice, B, as the intersection of sub direct products of B, 2-congruence extendible members of B and 2-chain limited members of B. To this end we consider 2-congruence extendibility in Chapter 4 and n-chain limited lattices in Chapter 5. Included in Chapter 4 is the result that in certain lattice varieties the amalgamation class is contained in the class of 2-congruence extendible members of the variety. A final theorem in Chapter 6 states that the amalgamation class of a B-lattice variety is a Horn class. |
---|