Process integration in the optimisation of amidase production from recombinant Escherichia coli
Includes abstract. === Includes bibliographical references (p. 127-138). === This thesis presents the investigation of the production of a novel thermostable amidase (EC 3.5.1.4) from Geobacillus pallidus RAPc8 using recombinant E.coli BL21 (DE3). The choice of growth medium and induction strategy w...
Main Author: | |
---|---|
Other Authors: | |
Format: | Dissertation |
Language: | English |
Published: |
University of Cape Town
2015
|
Subjects: | |
Online Access: | http://hdl.handle.net/11427/10857 |
Summary: | Includes abstract. === Includes bibliographical references (p. 127-138). === This thesis presents the investigation of the production of a novel thermostable amidase (EC 3.5.1.4) from Geobacillus pallidus RAPc8 using recombinant E.coli BL21 (DE3). The choice of growth medium and induction strategy were optimised under bioreactor conditions to enhance amidase productivity. Further, expanded bed adsorption (EBA) was assessed as a tool for minimising the unit operations in the amidase purification train. The EBA process can integrate up to four steps by merging processes involved in centrifugation, microfiltration and initial adsorption into one unit operation. |
---|