The regulation of Phosphoenolpyruvate (PEP) metabolism via Phosphoenolpyruvate Carboxylase (PEPC) in P-deficient roots and nodules of Virgilia divaricata

Thesis (PhD)--Stellenbosch University, 2015. === ENGLISH ABSTRACT: Plants exhibit a flexible array of morphological, physiological and biochemical adaptations during phosphorous limitation. Legumes are vulnerable to P deficiency, because it affects their ability to fix atmospheric nitrogen (N2). I...

Full description

Bibliographic Details
Main Author: Stevens, Gary
Other Authors: Valentine, Alexander
Format: Others
Language:en_ZA
Published: Stellenbosch : Stellenbosch University 2015
Subjects:
Online Access:http://hdl.handle.net/10019.1/97853
Description
Summary:Thesis (PhD)--Stellenbosch University, 2015. === ENGLISH ABSTRACT: Plants exhibit a flexible array of morphological, physiological and biochemical adaptations during phosphorous limitation. Legumes are vulnerable to P deficiency, because it affects their ability to fix atmospheric nitrogen (N2). In particular, legumes from nutrient-poor ecosystems, such as the Fynbos in the Cape Floristic Region (CFR) evolved on P deficient soils and may therefore display unique adaptations to soil P stress. In general, very few studies on legumes have focussed on the belowground structures of nodules as a plant organ. Moreover, even less is known about the P stressed responses in nodules from legumes in nutrient-poor ecosystems. The aim of this research was to investigate the metabolic flexibility of organic acid and amino acid metabolism in the nodulated root system of the Fynbos legume Virgilia divaricata, during low P stress. Virgilia divaricata, which grows in the Cape Floristic Region, was used in this study to enhance our knowledge regarding the vital role that the cytosolic enzyme, phosphoenol pyruvate carboxylase (PEPC) plays in phosphoenol pyruvate (PEP) metabolism, in roots and nodules of this legume during phosphate stress. V. divaricata was grown under glasshouse conditions (20 - 25°C) in sterilized quartz sand for 2-3 months whilst being inoculated with the nitrogen fixation bacteria, Burkholderia phytofirmans, which was isolated from V. divaricata nodules grown in fynbos soil. Two phosphate treatments, 5 μM and 500 μM, were applied simulating low-phosphate and high phosphate conditions respectively using a modified Long Ashton Nutrient Solution to simulate a low nutrient ecosystem such as the Cape Floristic Region. Roots and nodules were then analysed for growth kinetics, nutrient acquisition and distribution, enzyme activity and genetic responses. It was shown that during phosphate deficiency, V. divaricata nodules experienced less Pi stress than roots, due to increased metabolic phosphate conservation reactions during organic acid synthesis via an increased PEPC activity. The increased PEPC activity resulted in an increase in downstream metabolic products such as organic acids, (malic acid and citric acid), and amino acids (glutamate, aspartate and asparagine). Although the biological nitrogen fixation (BNF) declined, the high efficiency of BNF may be underpinned by these altered phosphate conservation pathways and enhanced resource allocation during growth particularly under low phosphate (LP) conditions. Therefore, it can be concluded that the efficiency of the nodules via an increased allocation of resources and P acquiring mechanisms in V. divaricata may be the key to the plant’s ability to adapt to poor P environments and thus sustaining its reliance on BNF. From the data obtained as well as previous findings, it has been established that the phosphate conservation mechanisms in roots and nodules, involve the non-adenylate requiring PEPC-bypass route. 13C Nuclear magnetic resonance (NMR) gave us a better understanding regarding the incorporation rates of the PEPCderived C into malate, α-ketoglutarate and asparagine. It therefore is suggested that V. divaricata nodules may use their large PEPC-derived malate pool to prevent large declines in BNF under low phosphate conditions. The nodules of V. divaricata were able to offset an excessive drop in BNF, despite a decline in inorganic phophosphate (Pi) levels. It therefore appears that nodules have evolved to acquire different mechanisms than roots to adapt to phosphate deficiency in order to maintain their function. This was achieved via increased regulation of nodule PEPC and its downstream products. This implies that compared to roots under low P, nodules alter the metabolism of PEPC derived C, in order to maintain nodule respiration and amino acid synthesis. This trait could be observed in the synthesis of larger 13C malate pools of nodules compared to roots, from PEPC, which was underpinned by their different regulation mechanisms of enzyme activity, of the same protein isoform. Since malate is a potent inhibitor of PEPC activity, roots appear to have invested in more PEPC protein compared to nodules. In contrast, nodules with lower PEPC protein, achieved greater enzyme activity than roots, possibly due to higher phosphorylation in order to reduce the malate effect. The subsequent metabolism of this PEPCderived malate, caused roots and nodules to synthesise asparagine via different pathways. These findings imply that roots and nodules under P stress, synthesise their major export amino acid, asparagine, via different routes. This research has generated new knowledge regarding the physiological impact of the organic and amino acid metabolism, derived from PEPC-C in the roots and nodules of legumes growing in nutrient poor ecosystems. It has demonstrated for the first time that the nodules of legume from a nutrient-poor ecosystem rely on improved resource allocation, Pi distribution, and PEPC-derived organic acids to maintain the efficient functioning of N assimilation under P stress. This may be a consequence of having evolved in a nutrient-poor ecosystem, so that nodule-bacteroid respiration and N metabolism can be maintained in P-poor soils such as the Fynbos. === AFRIKAANSE OPSOMMING: Tydens fosfaat stremming maak plante gebruik van buigsame kombinasies van morfologiese, fisiologiese en biochemiese aanpassings. Peulplante is sensitief vir fosfaat tekorte omdat dit die vermoë om atmosferiese stikstof te kan fikseer, grootliks beïnvloed. Peulplante vanuit ekosisteme met mineraal-arme gronde, soos Fynbos binne die Kaapse Blommeryk, het ontwikkel in grond met lae fosfaatvlakke en mag dus unieke aanpassings tot fosfaat tekorte toon. Oor die algemeen is daar baie min peulplant studies wat fokus op die ondergrondse strukture van wortelknoppies as ‘n plant orgaan. Nog minder inligting is beskikbaar oor wortelknoppies, van peulplante, vanuit mineraalarme ekosisteme, se reaksie teenoor ‘n fosfaat tekort. Die doel van hierdie navorsing was om die metaboliese buigsaamheid van organiese- en aminosuur metabolisme in die (nodulated) wortelknoppie-wortelstelsel van die Fynbos peulplant Virgilia divaricata, tydens fosfaat tekort te ondersoek. Virgilia divaricata wat voorkom in die Kaapse Blommeryk, was gebruik in hierdie studie om die huidige kennis te verbeter van die essensiële rol wat die sitisoliese ensiem, fosfo-enol piruvaat karboksilase (PEPC) in fosfo-enol piruvaat metabolisme tydens ‘n fosfaat tekort speel binne die wortels en wortelknoppies van hierdie peulplant. V. divaricata was gegroei onder glashuis toestande (20 - 25°C) in gesteriliseerde kwartssand vir 2-3 maande. Die plante was geïnokuleer met die stikstoffikserende bakterie, Burkholderia phytofirmans, wat geïsoleer is vanaf V. divaricata wortelknoppies wat in Fynbos grond gegroei is. Twee fosfaatbehandelings, 5μM and 500μM, was toegedien om lae en hoë fosfaat toestande, onderskeidelik, na te boots deur gebruik te maak van ‘n aangepasde Long Ashton voedingstofmengsel om ‘n ekosisteem, soos die Kaapse Blommeryk, met lae voedingstofvlakke na te boots. Die wortels en knoppies was geanaliseer ten opsigte van die groeikinetika, opname en verspreiding van voedingstowwe, ensiemaktiwiteit en genetiese aanpassings. Dis is bewys dat tydens fosfaat tekort V. divaricata wortelknoppies minder fosfaat stres ervaar as die wortels, as gevolg van die verhoogde metaboliese fosfaat bewaringsreaksies tydens organise suur sintese via die styging in PEPC aktiwiteit. Die styging in PEPC aktiwiteit lei tot ‘n verhoging in stroomaf metaboliese produkte soos organiese- (appel- en sitroënsuur) en aminosure (glutamaat, aspartaat en asparagien). Alhoewel biologiese stikstoffiksering verlaag het, kan die hoë doeltreffendheid daarvan ondersteun word deur díe aangepasde fosfaat bewarings weë asook verhoogde hulpbron toekenning tydens groei onder lae fosfaat omstandighede. Dit kan dus afgelei word dat die doeltreffendheid van die wortelknoppies via die verhoging in belegging van hulpbronne en fosfaat opname meganismes in V. divaricata moontlik die sleutel is tot die plant se vermoë om aan te pas tot omgewings met lae fosfaatvlakke en sodoende die afhanklikheid van biologiese stikstofbinding te kan onderhou. Data in hierdie as ook vorige studies, wys dat die fosfaat bewaringsmeganismes in wortels en wortelknoppies die PEPC-ompad roete, wat nie adenilaat benodig nie, gebruik. 13C NMR het meer lig gewerp aangaande die vaslegging van koolstof vanaf PEPC na malaat, α-ketoglutaraat en asparagien. Dit word voorgestel dat V. divaricata knoppies ‘n groot hoeveelheid malaat, afkomstig van PEPC-werking, gebruik om groot dalings in biologiese stikstofbinding tydens fosfaat tekort, te verhoed. Die wortelknoppies van V. divaricata kon ‘n oormatige verlaging in biologiese stikstofbinding voorkom ten spyte van die verlaging in fosfaatvlakke. Dit wil voorkom dat wortelknoppies ander meganismes as die wortels ontwikkel het om aan te pas tot fosfaat tekort en sodoende dus hul funksie behou. Dit word bereik deur ‘n verhoging in die regulering van PEPC en die stroomaf produkte in die wortelknoppies. Dit blyk dat wortelknoppies tydens fosfaat te kort, in vergelyking met wortels, die metabolisme van die koolstof vanaf PEPC verander om sodoende respirasie en aminosuursintese te onderhou. Dit wil voorkom dat hierdie meganismes verskil van die van wortel meganismes. Hierdie eienskap kan toegeskryf word aan die produksie van ‘n groter hoeveelheid van 13C malaat vanaf PEPC in die wortelknoppies teenoor die wortels, wat ondersteun word die verskillende reguleringsmeganismes van ensiemaktiwiteit van dieselfde proteïen isoform. Malaat is ‘n kragtige inhibeerder van PEPC-aktiwiteit, dus blyk dit dat die wortels belê in meer PEPC proteïene as die wortelknoppies. In teenstelling, toon die wortelknoppies met laer PEPC proteïene, ‘n hoër ensiem aktiwiteit as die wortels. Dit kan wees as gevolg van hoër fosforilasie om die effek van malaat te verlaag. Die metabolisme van die malaat vanaf PEPC het die sintese van asparagien in die wortels en wortelknoppies via verskillende roetes tot gevolg gehad. Dit impliseer dat tydens ‘n tekort aan fosfaat, wortels en wortelknoppies hul hoof uitvoer aminosuur, asparagien, deur verskillende roetes sintetiseer. Hierdie studie het nuwe kennis aangaande die fisiologiese impak van organiese- en aminosuur metabolisme met koolstof vanaf PEPC in die wortels en wortelknoppies van peulplante wat voorkom in ekosisteme met lae voedingstofvlakke, voortgebring. Vir die eerste keer is dit bewys dat die wortelknoppies vanaf peulplante wat voorkom in mineraal-arme ekosisteme, staatmaak op verbeterde hulpbron beleggings, fosfaat verspreiding en organiese sure vanaf PEPC om die doeltreffendheid van funksionele stikstofassimilasie tydens fosfaat tekort, te onderhou. Dit mag die gevolg wees van, om in ‘n voedingstof arme ekosisteem te ontwikkel sodat die wortelknoppiebakteroïed respirasie en stikstofmetabolisme onderhou kan word in fosfaat arme grond soos die Fynbos.