Recovery of dissolved platinum group metals from a pregnant copper sulphate leach solution by precipitation

Thesis (MEng)--Stellenbosch University, 2014. === ENGLISH ABSTRACT: In Base Metal Refineries (BMRs), the copper sulphate leach solution produced during the final pressure leaching stage contains impurities such as selenium and tellurium, as well as other precious metals (OPMs, namely Rh, Ru, and I...

Full description

Bibliographic Details
Main Author: Mulwanda, James
Other Authors: Dorfling, C.
Format: Others
Language:en_ZA
Published: Stellenbosch : Stellenbosch University 2014
Subjects:
Online Access:http://hdl.handle.net/10019.1/86538
id ndltd-netd.ac.za-oai-union.ndltd.org-sun-oai-scholar.sun.ac.za-10019.1-86538
record_format oai_dc
collection NDLTD
language en_ZA
format Others
sources NDLTD
topic Copper sulfate
Dissertations -- Process engineering
Leaching
Precipitation (Chemistry)
Thiocyanates
UCTD
Theses -- Process engineering
spellingShingle Copper sulfate
Dissertations -- Process engineering
Leaching
Precipitation (Chemistry)
Thiocyanates
UCTD
Theses -- Process engineering
Mulwanda, James
Recovery of dissolved platinum group metals from a pregnant copper sulphate leach solution by precipitation
description Thesis (MEng)--Stellenbosch University, 2014. === ENGLISH ABSTRACT: In Base Metal Refineries (BMRs), the copper sulphate leach solution produced during the final pressure leaching stage contains impurities such as selenium and tellurium, as well as other precious metals (OPMs, namely Rh, Ru, and Ir). Se and Te are removed by precipitation with sulphur dioxide prior to electrowinning of Cu. While a small percentage of the dissolved OPMs precipitate with the Se and Te, the largest portion remains in solution and is recycled to the first stage leach. If a larger portion of the OPMs in solution can be recovered in the Se/Te precipitation stage, OPM losses and the OPM inventory of the plant can be reduced. The aim of this project was to determine operating conditions that would allow maximum OPM recovery with minimal Cu and Ni co-precipitation in the Se/Te removal section of a BMR. The effects that the operating temperature, pressure, stirring rate, reagent type, and reagent quantity have on the metal precipitation behavior and precipitate characteristics were determined experimentally. Thio-urea and sulphurous acid were evaluated as precipitation reagents for temperatures of 80°C and 160°C, stirring rates of 250 rpm and 500 rpm, and pressures equal to ambient pressure and 7 bar. 200 % and 320 % excess thio-urea and 720 % and 960 % excess sulphur dioxide were used. The precipitation of OPMs with sulphur dioxide was generally poor; the maximum percentage Rh, Ru, and Ir precipitated were 35 %, 18 %, and 20 %, respectively. It was, however, found that the OPM precipitation increased as the reagent amount was increased. Increasing the temperature further increased Rh and Ir precipitation but affected the Ru precipitation negatively. Thio-urea precipitated virtually all of the Rh contained in the solution irrespective of the values of the process variables studied. As was the case with sulphur dioxide, increasing the amount of thio-urea added resulted in increased Ru and Ir precipitation, while higher temperatures favored Ir precipitation but not Ru precipitation. The maximum percentage Ru and Ir precipitation achieved with thio-urea were 87 % and 60 %, respectively. Complete Se precipitation was observed at all process conditions, while Te precipitation increased as the operating temperature and the reagent quantity were increased. Maximum Te precipitation of 98 % and 90 % were achieved when using 320 % excess thio-urea and 960 % sulphurous acid quantities, respectively, at 160°C and a stirring rate of 250 rpm. Increasing the reagent quantity and temperature did, however, also result in increased copper and nickel precipitation. The statistical analysis of the results allowed regression models to be fitted to predict the percentage metal precipitation as a function of the investigated process variables. These models were used to define an objective function to determine the optimal operating conditions. A temperature of 80oC, a pressure of 7 bar, and 200 % excess thio-urea were proposed as the optimum operating conditions that would yield 98 % Rh, 75 % Ru, and 48 % Ir precipitation with less than 5 % Cu and Ni co-precipitation. Experimental validation tests confirmed the model predicted values and proved repeatability of the experimental data. === AFRIKAANSE OPSOMMING: Die kopersulfaat logingsoplossing wat tydens die finale drukloging stadium in Basis Metaal Raffinaderye (BMRe) produseer word, bevat onsuiwerhede soos selenium en tellurium sowel as ander edelmetale (AEMe, naamlik Rh, Ru, en Ir). Se en Te word voor Cu elektrowinning verwyder deur middel van presipitasie met swaweldioksied. Alhoewel ʼn klein persentasie van die opgeloste AEMe saam met die Se en Te presipiteer, bly die grootste gedeelte in oplossing en word gevolglik na die eerste loging stadium hersirkuleer. AEM verliese en die AEM inventaris van die aanleg kan verminder word indien ʼn groter gedeelte van die AEMe in die Se/Te presipitasie stadium herwin kan word. Die doel van hierdie projek was om bedryfstoestande te bepaal om maksimum AEM herwinning met minimale Cu en Ni kopresipitasie in die Se/Te verwyderingseksie van ʼn BMR te behaal. Die effekte wat bedryfstoestande soos temperatuur, druk, roerder tempo, tipe reagens, en hoeveelheid reagens op die metaal presipitasiegedrag en presipitaat eienskappe het, is eksperimenteel bepaal. Tio-ureum en swaweligsuur is evalueer as presipitasie reagense vir temperature van 80°C en 160°C, roerder tempo’s van 250 rpm en 500 rpm, en drukke gelyk aan omgewingsdruk en 7 bar. 200 % en 320 % oormaat tio-ureum en 720 % en 960 % oormaat swaweldioksied is gebruik. Die presipitasie van AEMe met swaweldioksied was swak in die algemeen; die maksimum persentasie Rh, Ru, en Ir presipitasie wat behaal is, is 35 %, 18 %, en 20 %, onderskeidelik. Daar is egter gevind dat die AEM presipitasie toeneem indien die hoeveelheid reagens toeneem. ʼn Toename in die temperatuur het verder tot ʼn toename in Rh en Ir presipitasie gelei, maar dit het Ru presipitasie negatief affekteer. Tio-ureum het basies al die Rh in oplossing laat presipiteer, ongeag die waardes van die ander prosesveranderlikes wat ondersoek is. Soos wat die geval vir swaweldioksied was, het ʼn toename in die hoeveelheid tio-ureum ʼn toename in die Ru en Ir presipitasie tot gevolg gehad, terwyl hoër temperature Ir presipitasie bevoordeel en Ru presipitasie benadeel het. Die maksimum persentasie Ru en Ir presipitasie wat met tio-ureum behaal is, is 87 % en 60 %, onderskeidelik. Volledige Se presipitasie is by alle proses toestande waargeneem, terwyl Te presipitasie toegeneem het soos wat die temperatuur en die hoeveelheid reagens toegeneem het. Maksimum Te presipitasie van 98 % en 90 % is behaal toe 320 % oormaat tio-ureum en 960 % oormaat swaweligsuur, onderskeidelik, by 160°C en ʼn roerder tempo van 250 rpm gebruik is. ʼn Toename in die hoeveelheid reagens en die temperatuur het egter ook meer koper en nikkel presipitasie tot gevolg gehad. Die statistiese analise van die resultate het dit moontlik gemaak om regressie modelle te pas om die persentasie metaal presipitasie as ʼn funksie van die ondersoekte veranderlikes te voorspel. Hierdie modelle is gebruik om ʼn doelfunksie te definieer ten einde die optimale bedryfstoestande te bepaal. ʼn Temperatuur van 80°C, ʼn druk van 7 bar, en 200 % oormaat tioureum is voorgestel as die optimale bedryfstoestande wat 98 % Rh, 75 % Ru, en 48 % Ir presipitasie met minder as 5 % Cu en Ni kopresipitasie tot gevolg sal hê. Eksperimentele geldigheidsbepalingtoetse het die waardes wat deur die modelle voorspel is bevestig en die herhaalbaarheid van die eksperimentele data bewys.
author2 Dorfling, C.
author_facet Dorfling, C.
Mulwanda, James
author Mulwanda, James
author_sort Mulwanda, James
title Recovery of dissolved platinum group metals from a pregnant copper sulphate leach solution by precipitation
title_short Recovery of dissolved platinum group metals from a pregnant copper sulphate leach solution by precipitation
title_full Recovery of dissolved platinum group metals from a pregnant copper sulphate leach solution by precipitation
title_fullStr Recovery of dissolved platinum group metals from a pregnant copper sulphate leach solution by precipitation
title_full_unstemmed Recovery of dissolved platinum group metals from a pregnant copper sulphate leach solution by precipitation
title_sort recovery of dissolved platinum group metals from a pregnant copper sulphate leach solution by precipitation
publisher Stellenbosch : Stellenbosch University
publishDate 2014
url http://hdl.handle.net/10019.1/86538
work_keys_str_mv AT mulwandajames recoveryofdissolvedplatinumgroupmetalsfromapregnantcoppersulphateleachsolutionbyprecipitation
_version_ 1718165571222110208
spelling ndltd-netd.ac.za-oai-union.ndltd.org-sun-oai-scholar.sun.ac.za-10019.1-865382016-01-29T04:03:51Z Recovery of dissolved platinum group metals from a pregnant copper sulphate leach solution by precipitation Mulwanda, James Dorfling, C. Stellenbosch University. Faculty of Engineering. Dept. of Process Engineering. Copper sulfate Dissertations -- Process engineering Leaching Precipitation (Chemistry) Thiocyanates UCTD Theses -- Process engineering Thesis (MEng)--Stellenbosch University, 2014. ENGLISH ABSTRACT: In Base Metal Refineries (BMRs), the copper sulphate leach solution produced during the final pressure leaching stage contains impurities such as selenium and tellurium, as well as other precious metals (OPMs, namely Rh, Ru, and Ir). Se and Te are removed by precipitation with sulphur dioxide prior to electrowinning of Cu. While a small percentage of the dissolved OPMs precipitate with the Se and Te, the largest portion remains in solution and is recycled to the first stage leach. If a larger portion of the OPMs in solution can be recovered in the Se/Te precipitation stage, OPM losses and the OPM inventory of the plant can be reduced. The aim of this project was to determine operating conditions that would allow maximum OPM recovery with minimal Cu and Ni co-precipitation in the Se/Te removal section of a BMR. The effects that the operating temperature, pressure, stirring rate, reagent type, and reagent quantity have on the metal precipitation behavior and precipitate characteristics were determined experimentally. Thio-urea and sulphurous acid were evaluated as precipitation reagents for temperatures of 80°C and 160°C, stirring rates of 250 rpm and 500 rpm, and pressures equal to ambient pressure and 7 bar. 200 % and 320 % excess thio-urea and 720 % and 960 % excess sulphur dioxide were used. The precipitation of OPMs with sulphur dioxide was generally poor; the maximum percentage Rh, Ru, and Ir precipitated were 35 %, 18 %, and 20 %, respectively. It was, however, found that the OPM precipitation increased as the reagent amount was increased. Increasing the temperature further increased Rh and Ir precipitation but affected the Ru precipitation negatively. Thio-urea precipitated virtually all of the Rh contained in the solution irrespective of the values of the process variables studied. As was the case with sulphur dioxide, increasing the amount of thio-urea added resulted in increased Ru and Ir precipitation, while higher temperatures favored Ir precipitation but not Ru precipitation. The maximum percentage Ru and Ir precipitation achieved with thio-urea were 87 % and 60 %, respectively. Complete Se precipitation was observed at all process conditions, while Te precipitation increased as the operating temperature and the reagent quantity were increased. Maximum Te precipitation of 98 % and 90 % were achieved when using 320 % excess thio-urea and 960 % sulphurous acid quantities, respectively, at 160°C and a stirring rate of 250 rpm. Increasing the reagent quantity and temperature did, however, also result in increased copper and nickel precipitation. The statistical analysis of the results allowed regression models to be fitted to predict the percentage metal precipitation as a function of the investigated process variables. These models were used to define an objective function to determine the optimal operating conditions. A temperature of 80oC, a pressure of 7 bar, and 200 % excess thio-urea were proposed as the optimum operating conditions that would yield 98 % Rh, 75 % Ru, and 48 % Ir precipitation with less than 5 % Cu and Ni co-precipitation. Experimental validation tests confirmed the model predicted values and proved repeatability of the experimental data. AFRIKAANSE OPSOMMING: Die kopersulfaat logingsoplossing wat tydens die finale drukloging stadium in Basis Metaal Raffinaderye (BMRe) produseer word, bevat onsuiwerhede soos selenium en tellurium sowel as ander edelmetale (AEMe, naamlik Rh, Ru, en Ir). Se en Te word voor Cu elektrowinning verwyder deur middel van presipitasie met swaweldioksied. Alhoewel ʼn klein persentasie van die opgeloste AEMe saam met die Se en Te presipiteer, bly die grootste gedeelte in oplossing en word gevolglik na die eerste loging stadium hersirkuleer. AEM verliese en die AEM inventaris van die aanleg kan verminder word indien ʼn groter gedeelte van die AEMe in die Se/Te presipitasie stadium herwin kan word. Die doel van hierdie projek was om bedryfstoestande te bepaal om maksimum AEM herwinning met minimale Cu en Ni kopresipitasie in die Se/Te verwyderingseksie van ʼn BMR te behaal. Die effekte wat bedryfstoestande soos temperatuur, druk, roerder tempo, tipe reagens, en hoeveelheid reagens op die metaal presipitasiegedrag en presipitaat eienskappe het, is eksperimenteel bepaal. Tio-ureum en swaweligsuur is evalueer as presipitasie reagense vir temperature van 80°C en 160°C, roerder tempo’s van 250 rpm en 500 rpm, en drukke gelyk aan omgewingsdruk en 7 bar. 200 % en 320 % oormaat tio-ureum en 720 % en 960 % oormaat swaweldioksied is gebruik. Die presipitasie van AEMe met swaweldioksied was swak in die algemeen; die maksimum persentasie Rh, Ru, en Ir presipitasie wat behaal is, is 35 %, 18 %, en 20 %, onderskeidelik. Daar is egter gevind dat die AEM presipitasie toeneem indien die hoeveelheid reagens toeneem. ʼn Toename in die temperatuur het verder tot ʼn toename in Rh en Ir presipitasie gelei, maar dit het Ru presipitasie negatief affekteer. Tio-ureum het basies al die Rh in oplossing laat presipiteer, ongeag die waardes van die ander prosesveranderlikes wat ondersoek is. Soos wat die geval vir swaweldioksied was, het ʼn toename in die hoeveelheid tio-ureum ʼn toename in die Ru en Ir presipitasie tot gevolg gehad, terwyl hoër temperature Ir presipitasie bevoordeel en Ru presipitasie benadeel het. Die maksimum persentasie Ru en Ir presipitasie wat met tio-ureum behaal is, is 87 % en 60 %, onderskeidelik. Volledige Se presipitasie is by alle proses toestande waargeneem, terwyl Te presipitasie toegeneem het soos wat die temperatuur en die hoeveelheid reagens toegeneem het. Maksimum Te presipitasie van 98 % en 90 % is behaal toe 320 % oormaat tio-ureum en 960 % oormaat swaweligsuur, onderskeidelik, by 160°C en ʼn roerder tempo van 250 rpm gebruik is. ʼn Toename in die hoeveelheid reagens en die temperatuur het egter ook meer koper en nikkel presipitasie tot gevolg gehad. Die statistiese analise van die resultate het dit moontlik gemaak om regressie modelle te pas om die persentasie metaal presipitasie as ʼn funksie van die ondersoekte veranderlikes te voorspel. Hierdie modelle is gebruik om ʼn doelfunksie te definieer ten einde die optimale bedryfstoestande te bepaal. ʼn Temperatuur van 80°C, ʼn druk van 7 bar, en 200 % oormaat tioureum is voorgestel as die optimale bedryfstoestande wat 98 % Rh, 75 % Ru, en 48 % Ir presipitasie met minder as 5 % Cu en Ni kopresipitasie tot gevolg sal hê. Eksperimentele geldigheidsbepalingtoetse het die waardes wat deur die modelle voorspel is bevestig en die herhaalbaarheid van die eksperimentele data bewys. 2014-04-16T17:29:53Z 2014-04-16T17:29:53Z 2014-04 Thesis http://hdl.handle.net/10019.1/86538 en_ZA Stellenbosch University xviii, 130 p. : ill. Stellenbosch : Stellenbosch University