Measurement and behavior of the overall volumetric oxygen transfer coefficient in aerated agitated alkane based multiphase systems

Thesis (MScEng (Process Engineering))--University of Stellenbosch, 2010. === ENGLISH ABSTRACT: Hydrocarbons provide excellent feed stocks for bioconversion processes to produce value added products using various micro-organisms. However, hydrocarbon-based aerobic bioprocesses may exhibit transport...

Full description

Bibliographic Details
Main Author: Manyuchi, Musaida Mercy
Other Authors: Clarke, K. G.
Format: Others
Language:en
Published: Stellenbosch : University of Stellenbosch 2010
Subjects:
Online Access:http://hdl.handle.net/10019.1/5329
id ndltd-netd.ac.za-oai-union.ndltd.org-sun-oai-scholar.sun.ac.za-10019.1-5329
record_format oai_dc
collection NDLTD
language en
format Others
sources NDLTD
topic Oxygen transfer
Dissertations -- Process engineering
Theses -- Process engineering
Alkane-based systems
Bioconversion processes
spellingShingle Oxygen transfer
Dissertations -- Process engineering
Theses -- Process engineering
Alkane-based systems
Bioconversion processes
Manyuchi, Musaida Mercy
Measurement and behavior of the overall volumetric oxygen transfer coefficient in aerated agitated alkane based multiphase systems
description Thesis (MScEng (Process Engineering))--University of Stellenbosch, 2010. === ENGLISH ABSTRACT: Hydrocarbons provide excellent feed stocks for bioconversion processes to produce value added products using various micro-organisms. However, hydrocarbon-based aerobic bioprocesses may exhibit transport problems where the bioconversion is limited by oxygen supply rather than reaction kinetics. Consequently, the overall volumetric oxygen transfer coefficient (KLa) becomes critical in designing, operating and scaling up of these processes. In view of KLa importance in hydrocarbon-based processes, this work evaluated KLa measurement methodologies as well as quantification of KLa behavior in aerated agitated alkane-solid-aqueous dispersions. A widely used KLa measurement methodology, the gassing out procedure (GOP) was improved. This improvement was done to account for the dissolved oxygen (DO) transfer resistances associated with probe. These resistances result in a lag in DO response during KLa measurement. The DO probe response lag time, was incorporated into the GOP resulting in the GOP (lag) methodology. The GOP (lag) compared well with the pressure step procedure (PSP), as documented in literature, which also incorporated the probe response lag time. Using the GOP (lag), KLa was quantified in alkane-solid-aqueous dispersions, using either inert compounds (corn flour and CaCO3) or inactive yeast cells as solids to represent the micro-organisms in a hydrocarbon bioprocess. Influences of agitation, alkane concentration, solids loading and solids particle sizes and their interactions on KLa behavior in these systems were quantified. In the application of an accurate KLa measurement methodology, the DO probe response lag time was investigated. Factors affecting the lag, which included process conditions such as agitation (600-1200rpm), alkane concentration (2.5-20% (v/v), alkane chain length (n-C10-13 and n-C14-20), inert solids loading (1-10g/L) and solids particle sizes (3-14μm) as well as probe characteristics such as membrane age and electrolyte age (5 day usage), were investigated. Kp, the oxygen transfer coefficient of the probe, was determined experimentally as the inverse of the time taken for the DO to reach 63.2% of saturation after a step change in DO concentration. Kp dependence on these factors was defined using 22 factorial design experiments. Kp decreased on increased membrane age with an effect double that of Kp decrease due to electrolyte age. Additionally, increased alkane concentration decreased Kp with an effect 7 times higher compared to that of Kp decrease due to increased alkane chain length. This was in accordance to Pareto charts quantification. KLa was then calculated, using the GOP (lag), according to equation [1] which incorporates the influence of Kp. Equation 1 is derived from the simultaneous solution of the models which describe the response of the system and of the probe to a step change in DO. 1 1 * L p p p K at K t L p p La C K e K ae C K K = -  - - -  -   [1] The KLa values documented in literature from the PSP and KLa calculated by the GOP (lag) showed only a 1.6% difference. However KLa values calculated by the GOP (lag) were more accurate than KLa calculated by the GOP, with up to >40% error observed in the latter according to t-tests analyses. These results demonstrated that incorporating Kp markedly improved KLa accuracy. Consequently, the GOP (lag) was chosen as the preferred KLa measurement methodology. KLa was determined in n-C14-20-inert solid-aqueous dispersions. Experiments were conducted in a stirred tank reactor with a 5L working volume at constant aeration of 0.8vvm, 22ºC and 101.3kPa. KLa behavior across a range of agitations (600- 1200rpm), alkane concentrations (2.5-20% (v/v)), inert solids loadings (1-10g/L) and solids particle sizes (3-14μm) was defined using a 24 factorial design experiment. In these dispersions, KLa increased significantly on increased agitation with an effect 5 times higher compared to that of KLa increase due to interaction of increased alkane concentration and inert solids loading. Additionally, KLa decreased significantly on increased alkane concentration with an effect 4 times higher compared to both that of increased solids particle sizes and the interaction of increased agitation and solids particle size. In n-C14-20-yeast-aqueous dispersions, KLa was determined under narrowed process conditions better representing typical bioprocess conditions. KLa behavior across a range of agitations (600-900rpm), alkane concentrations (2.5-11.25% (v/v)) and yeast loadings (1-5.5g/L) using a 5μm-yeast cell was defined using a 23 factorial design experiment. In these dispersions, KLa increased significantly on increased agitation. Additionally, KLa decreased significantly on increased yeast loading with an effect 1.2 times higher compared to that of KLa decrease due to interaction of increased alkane concentration and yeast loading. In this study, the importance of Kp for accurate KLa measurement in alkane based systems has been quantified and an accurate and less complex methodology for its measurement applied. Further, KLa behavior in aerated alkane-solid-aqueous dispersions was quantified, demonstrating KLa enhancement on increased agitation and KLa depression on increased alkane concentration, solids loading and solids particle sizes. === AFRIKAANSE OPSOMMING: Koolwaterstowwe dien as uitstekende voervoorraad vir ´n verskeidenheid van mikroorganismes wat aangewend word in biologiese omsettingsprosesse ter vervaardiging van waardetoevoegende produkte. Hierdie biologiese omsettingsprosesse word egter vertraag weens die gebrek aan suurstoftoevoer onder aerobiese toestande. Die tempo van omsetting word dus beheer deur die volumetriese suurstofoordragkoeffisiënt (KLa) eerder as die toepaslike reaksiekinetika. Die bepaling van ´n akkurate KLa word dus krities tydens die ontwerp en opskalering van hierdie prosesse. Met dit in gedagte het hierdie studie die huidige metodes om KLa te bepaal geëvalueer en die gedrag van KLa in goed vermengde en belugde waterige alkaanmengsels met inerte vastestowwe, soos gisselle, in suspensie ondersoek. ´n Deesdae populêre metode om KLa te bepaal, die sogenaamde gasvrylatingsprosedure (GOP) is in hierdie studie verbeter. Die verbetering berus op die ontwikkeling van ´n prosedure om die suurstofoordragsweerstand van die pobe wat die hoeveelheid opgeloste suurstof (DO) meet, in berekening te bring. Hierdie weerstand veroorsaak ´n vertragin in the responstyd van die probe. Die verbeterde metode, GOP (lag), vergelyk goed met die gepubliseerde resultate van die drukstaptegniek (PSP) wat ook die responstyd in ag neem. GOP (lag) is ingespan om KLa te gekwantifiseer vir waterige alkaan-vastestof suspensies. Inerte componente soos mieliemeel, kalsiumkarbonaat en onaktiewe gisselle het gedien as die vastestof in suspensie verteenwoordigend van die mikroörganismes in ´n koolwaterstof bio-proses. Die invloed van vermengingstempo, alkaan konsentrasie, vastestof konsentrasie en partikelgrootte asook die interaksie van al die bogenoemde op KLa is kwatitatief bepaal in hierdie studie. Faktore wat die responstyd van die DO probe beïnvloed is ondersoek. Hierdie faktore is onder meer vermengingstempo (600-1200opm), alkaankonsentrasie (2.5-20% (v/v)), alkaankettinglengte (n-C10-13 en n-C14-20), vastestofkonsentrasie (1-10g/L) en partikelgrootte (3-14 μm). Faktore wat die eienskappe van die probe beïnvoed, naamlik membraan-en elektrolietouderdom (5 dae verbruik), is ook ondersoek. Kp, die suurstofoordragskoeffisiënt, is bepaal deur ´n inkrementele verandering in die suurstofkonsentrasie van die mengsel te maak en die tyd vir 63.2% versadiging van die probelesing te noteer. Die genoteerde tyd is die response tyd van die probe en Kp, die inverse van hierdie tyd. Die afhanklikheid van Kp op die bogenoemde faktore is ondersoek in ´n 22 faktorieël ontwerpte reeks eksperimente. Kp toon ´n afname met ´n toename in membraanouderdom. Hierdie afname is dubbel in grootte as dit vergelyk word met die afname relatief tot die toename in elektrolietouderdom. Verder toon Kp ´n afname met ´n toename in alkaankonsentrasie. Hierdie afname is 7 keer groter relatief tot die afname gesien met die toename in alkaan kettinglengte. Hierdie is in goeie ooreenstemming met Pareto kaarte as kwantifiseringsmetode. KLa is bereken met die inagname van Kp volgens vergelyking [1]: 1 1 * L p p p K at K t L p p La C K e K ae C K K = -  - - -  -   [1] Vergelyking [1] is afgelei vanaf die gelyktydige oplossing van die bestaande modelle wat die responstyd van die pobe vir ´n stapverandering in DO bereken. Die KLa waardes van die PSP metode uit literatuur verskil in die orde van 1.6% van dié bereken deur vergelyking [2]. Hierdie verskil is weglaatbaar. Die KLa waardes verkry uit die GOP metode wat nie Kp in berekening bring nie, verskil met meer as 40% van die huidige, verbeterde metode volgens die statistiese t-test analiese. Dit bewys dat die inagname van Kp ´n merkwaardige verbetering in die akuraatheid van KLa teweeg bring. GOP (lag) kry dus voorkeur vir die berekening van KLa verder aan in hierdie studie. KLa is bereken vir n-C14-20-water mengsels met inerte vastestofsuspensies. Die eksperimente is uitgevoer in ´n 5L geroerde reaktor met ´n konstante belugting van 0.8vvm (volume lug per volume supensie per minuut), 22ºC en 101.3kPa. Die gedrag van KLa met betrekking tot vermengingstempo (600-1200opm), alkaankonsentrasie (2.5-20% (v/v)), vastestofkonsentrasie (1-10g/L) en partikelgrootte (3-14μm) is ondersoek in ´n 24 faktorieël ontwerpte reeks eksperimente. Verder is die invloed van vloeistofviskositeit en oppervlakspanning op KLa ondersoek in ´n 23 faktorieël ontwerpte reeks eksperimente. KLa het ´n beduidende toename getoon met ´n toename in vermengingstempo. Hierdie toename was 5 keer groter as die toename relatief tot die interaksie van alkaan-en vastestofkonsentrasie. KLa het ook beduidend afgeneem met ´n toename in alkaankonsentrasie. Die toename was 4 keer groter as die toename relatief tot die toename in partikelgrootte en die interaksie van vermengingstempo en partikelgrootte. In n-C14-20-water mengsels met gisselsuspensies is KLa bepaal onder kondisies verteenwoordigend van tipiesie biologiese omsettingsprosesse. Die gedrag van KLa met betrekking tot vermengingstempo (600-900opm), alkaankonsentrasie (2.5-11.25% (v/v)) en giskonsentrasie (1-5.5g/L) met ´n partikelgroote van 5μm is ondersoek in ´n 23 faktorieël ontwerpte reeks eksperimente. Hierdie eksperimente het ´n beduidende toename in KLa met ´n toename in vermengingstempo getoon sowel as ´n beduidende afname met ´n toename in giskonsentrasie. Hierdie afname is in die orde van 1.2 keer groter in vergelyking met die interaksie van alkeen- en giskonsentrasie. Hierdie studie bring die kritieke rol wat Kp speel in die akkurate bepaling van KLa in waterige alkaansisteme met inerte vastestofsuspensies na vore. Dit stel verder ´n metodiek voor vir die akurate meting van en kwantifisering van beide Kp en KLa onder aerobiese toestande met betrekking tot vermengingstempo, alkaankonsentrasie, vastestofkonsentrasie en partikelgrootte.
author2 Clarke, K. G.
author_facet Clarke, K. G.
Manyuchi, Musaida Mercy
author Manyuchi, Musaida Mercy
author_sort Manyuchi, Musaida Mercy
title Measurement and behavior of the overall volumetric oxygen transfer coefficient in aerated agitated alkane based multiphase systems
title_short Measurement and behavior of the overall volumetric oxygen transfer coefficient in aerated agitated alkane based multiphase systems
title_full Measurement and behavior of the overall volumetric oxygen transfer coefficient in aerated agitated alkane based multiphase systems
title_fullStr Measurement and behavior of the overall volumetric oxygen transfer coefficient in aerated agitated alkane based multiphase systems
title_full_unstemmed Measurement and behavior of the overall volumetric oxygen transfer coefficient in aerated agitated alkane based multiphase systems
title_sort measurement and behavior of the overall volumetric oxygen transfer coefficient in aerated agitated alkane based multiphase systems
publisher Stellenbosch : University of Stellenbosch
publishDate 2010
url http://hdl.handle.net/10019.1/5329
work_keys_str_mv AT manyuchimusaidamercy measurementandbehavioroftheoverallvolumetricoxygentransfercoefficientinaeratedagitatedalkanebasedmultiphasesystems
_version_ 1718165508777312256
spelling ndltd-netd.ac.za-oai-union.ndltd.org-sun-oai-scholar.sun.ac.za-10019.1-53292016-01-29T04:03:44Z Measurement and behavior of the overall volumetric oxygen transfer coefficient in aerated agitated alkane based multiphase systems Manyuchi, Musaida Mercy Clarke, K. G. University of Stellenbosch. Faculty of Engineering. Dept. of Process Engineering. Oxygen transfer Dissertations -- Process engineering Theses -- Process engineering Alkane-based systems Bioconversion processes Thesis (MScEng (Process Engineering))--University of Stellenbosch, 2010. ENGLISH ABSTRACT: Hydrocarbons provide excellent feed stocks for bioconversion processes to produce value added products using various micro-organisms. However, hydrocarbon-based aerobic bioprocesses may exhibit transport problems where the bioconversion is limited by oxygen supply rather than reaction kinetics. Consequently, the overall volumetric oxygen transfer coefficient (KLa) becomes critical in designing, operating and scaling up of these processes. In view of KLa importance in hydrocarbon-based processes, this work evaluated KLa measurement methodologies as well as quantification of KLa behavior in aerated agitated alkane-solid-aqueous dispersions. A widely used KLa measurement methodology, the gassing out procedure (GOP) was improved. This improvement was done to account for the dissolved oxygen (DO) transfer resistances associated with probe. These resistances result in a lag in DO response during KLa measurement. The DO probe response lag time, was incorporated into the GOP resulting in the GOP (lag) methodology. The GOP (lag) compared well with the pressure step procedure (PSP), as documented in literature, which also incorporated the probe response lag time. Using the GOP (lag), KLa was quantified in alkane-solid-aqueous dispersions, using either inert compounds (corn flour and CaCO3) or inactive yeast cells as solids to represent the micro-organisms in a hydrocarbon bioprocess. Influences of agitation, alkane concentration, solids loading and solids particle sizes and their interactions on KLa behavior in these systems were quantified. In the application of an accurate KLa measurement methodology, the DO probe response lag time was investigated. Factors affecting the lag, which included process conditions such as agitation (600-1200rpm), alkane concentration (2.5-20% (v/v), alkane chain length (n-C10-13 and n-C14-20), inert solids loading (1-10g/L) and solids particle sizes (3-14μm) as well as probe characteristics such as membrane age and electrolyte age (5 day usage), were investigated. Kp, the oxygen transfer coefficient of the probe, was determined experimentally as the inverse of the time taken for the DO to reach 63.2% of saturation after a step change in DO concentration. Kp dependence on these factors was defined using 22 factorial design experiments. Kp decreased on increased membrane age with an effect double that of Kp decrease due to electrolyte age. Additionally, increased alkane concentration decreased Kp with an effect 7 times higher compared to that of Kp decrease due to increased alkane chain length. This was in accordance to Pareto charts quantification. KLa was then calculated, using the GOP (lag), according to equation [1] which incorporates the influence of Kp. Equation 1 is derived from the simultaneous solution of the models which describe the response of the system and of the probe to a step change in DO. 1 1 * L p p p K at K t L p p La C K e K ae C K K = -  - - -  -   [1] The KLa values documented in literature from the PSP and KLa calculated by the GOP (lag) showed only a 1.6% difference. However KLa values calculated by the GOP (lag) were more accurate than KLa calculated by the GOP, with up to >40% error observed in the latter according to t-tests analyses. These results demonstrated that incorporating Kp markedly improved KLa accuracy. Consequently, the GOP (lag) was chosen as the preferred KLa measurement methodology. KLa was determined in n-C14-20-inert solid-aqueous dispersions. Experiments were conducted in a stirred tank reactor with a 5L working volume at constant aeration of 0.8vvm, 22ºC and 101.3kPa. KLa behavior across a range of agitations (600- 1200rpm), alkane concentrations (2.5-20% (v/v)), inert solids loadings (1-10g/L) and solids particle sizes (3-14μm) was defined using a 24 factorial design experiment. In these dispersions, KLa increased significantly on increased agitation with an effect 5 times higher compared to that of KLa increase due to interaction of increased alkane concentration and inert solids loading. Additionally, KLa decreased significantly on increased alkane concentration with an effect 4 times higher compared to both that of increased solids particle sizes and the interaction of increased agitation and solids particle size. In n-C14-20-yeast-aqueous dispersions, KLa was determined under narrowed process conditions better representing typical bioprocess conditions. KLa behavior across a range of agitations (600-900rpm), alkane concentrations (2.5-11.25% (v/v)) and yeast loadings (1-5.5g/L) using a 5μm-yeast cell was defined using a 23 factorial design experiment. In these dispersions, KLa increased significantly on increased agitation. Additionally, KLa decreased significantly on increased yeast loading with an effect 1.2 times higher compared to that of KLa decrease due to interaction of increased alkane concentration and yeast loading. In this study, the importance of Kp for accurate KLa measurement in alkane based systems has been quantified and an accurate and less complex methodology for its measurement applied. Further, KLa behavior in aerated alkane-solid-aqueous dispersions was quantified, demonstrating KLa enhancement on increased agitation and KLa depression on increased alkane concentration, solids loading and solids particle sizes. AFRIKAANSE OPSOMMING: Koolwaterstowwe dien as uitstekende voervoorraad vir ´n verskeidenheid van mikroorganismes wat aangewend word in biologiese omsettingsprosesse ter vervaardiging van waardetoevoegende produkte. Hierdie biologiese omsettingsprosesse word egter vertraag weens die gebrek aan suurstoftoevoer onder aerobiese toestande. Die tempo van omsetting word dus beheer deur die volumetriese suurstofoordragkoeffisiënt (KLa) eerder as die toepaslike reaksiekinetika. Die bepaling van ´n akkurate KLa word dus krities tydens die ontwerp en opskalering van hierdie prosesse. Met dit in gedagte het hierdie studie die huidige metodes om KLa te bepaal geëvalueer en die gedrag van KLa in goed vermengde en belugde waterige alkaanmengsels met inerte vastestowwe, soos gisselle, in suspensie ondersoek. ´n Deesdae populêre metode om KLa te bepaal, die sogenaamde gasvrylatingsprosedure (GOP) is in hierdie studie verbeter. Die verbetering berus op die ontwikkeling van ´n prosedure om die suurstofoordragsweerstand van die pobe wat die hoeveelheid opgeloste suurstof (DO) meet, in berekening te bring. Hierdie weerstand veroorsaak ´n vertragin in the responstyd van die probe. Die verbeterde metode, GOP (lag), vergelyk goed met die gepubliseerde resultate van die drukstaptegniek (PSP) wat ook die responstyd in ag neem. GOP (lag) is ingespan om KLa te gekwantifiseer vir waterige alkaan-vastestof suspensies. Inerte componente soos mieliemeel, kalsiumkarbonaat en onaktiewe gisselle het gedien as die vastestof in suspensie verteenwoordigend van die mikroörganismes in ´n koolwaterstof bio-proses. Die invloed van vermengingstempo, alkaan konsentrasie, vastestof konsentrasie en partikelgrootte asook die interaksie van al die bogenoemde op KLa is kwatitatief bepaal in hierdie studie. Faktore wat die responstyd van die DO probe beïnvloed is ondersoek. Hierdie faktore is onder meer vermengingstempo (600-1200opm), alkaankonsentrasie (2.5-20% (v/v)), alkaankettinglengte (n-C10-13 en n-C14-20), vastestofkonsentrasie (1-10g/L) en partikelgrootte (3-14 μm). Faktore wat die eienskappe van die probe beïnvoed, naamlik membraan-en elektrolietouderdom (5 dae verbruik), is ook ondersoek. Kp, die suurstofoordragskoeffisiënt, is bepaal deur ´n inkrementele verandering in die suurstofkonsentrasie van die mengsel te maak en die tyd vir 63.2% versadiging van die probelesing te noteer. Die genoteerde tyd is die response tyd van die probe en Kp, die inverse van hierdie tyd. Die afhanklikheid van Kp op die bogenoemde faktore is ondersoek in ´n 22 faktorieël ontwerpte reeks eksperimente. Kp toon ´n afname met ´n toename in membraanouderdom. Hierdie afname is dubbel in grootte as dit vergelyk word met die afname relatief tot die toename in elektrolietouderdom. Verder toon Kp ´n afname met ´n toename in alkaankonsentrasie. Hierdie afname is 7 keer groter relatief tot die afname gesien met die toename in alkaan kettinglengte. Hierdie is in goeie ooreenstemming met Pareto kaarte as kwantifiseringsmetode. KLa is bereken met die inagname van Kp volgens vergelyking [1]: 1 1 * L p p p K at K t L p p La C K e K ae C K K = -  - - -  -   [1] Vergelyking [1] is afgelei vanaf die gelyktydige oplossing van die bestaande modelle wat die responstyd van die pobe vir ´n stapverandering in DO bereken. Die KLa waardes van die PSP metode uit literatuur verskil in die orde van 1.6% van dié bereken deur vergelyking [2]. Hierdie verskil is weglaatbaar. Die KLa waardes verkry uit die GOP metode wat nie Kp in berekening bring nie, verskil met meer as 40% van die huidige, verbeterde metode volgens die statistiese t-test analiese. Dit bewys dat die inagname van Kp ´n merkwaardige verbetering in die akuraatheid van KLa teweeg bring. GOP (lag) kry dus voorkeur vir die berekening van KLa verder aan in hierdie studie. KLa is bereken vir n-C14-20-water mengsels met inerte vastestofsuspensies. Die eksperimente is uitgevoer in ´n 5L geroerde reaktor met ´n konstante belugting van 0.8vvm (volume lug per volume supensie per minuut), 22ºC en 101.3kPa. Die gedrag van KLa met betrekking tot vermengingstempo (600-1200opm), alkaankonsentrasie (2.5-20% (v/v)), vastestofkonsentrasie (1-10g/L) en partikelgrootte (3-14μm) is ondersoek in ´n 24 faktorieël ontwerpte reeks eksperimente. Verder is die invloed van vloeistofviskositeit en oppervlakspanning op KLa ondersoek in ´n 23 faktorieël ontwerpte reeks eksperimente. KLa het ´n beduidende toename getoon met ´n toename in vermengingstempo. Hierdie toename was 5 keer groter as die toename relatief tot die interaksie van alkaan-en vastestofkonsentrasie. KLa het ook beduidend afgeneem met ´n toename in alkaankonsentrasie. Die toename was 4 keer groter as die toename relatief tot die toename in partikelgrootte en die interaksie van vermengingstempo en partikelgrootte. In n-C14-20-water mengsels met gisselsuspensies is KLa bepaal onder kondisies verteenwoordigend van tipiesie biologiese omsettingsprosesse. Die gedrag van KLa met betrekking tot vermengingstempo (600-900opm), alkaankonsentrasie (2.5-11.25% (v/v)) en giskonsentrasie (1-5.5g/L) met ´n partikelgroote van 5μm is ondersoek in ´n 23 faktorieël ontwerpte reeks eksperimente. Hierdie eksperimente het ´n beduidende toename in KLa met ´n toename in vermengingstempo getoon sowel as ´n beduidende afname met ´n toename in giskonsentrasie. Hierdie afname is in die orde van 1.2 keer groter in vergelyking met die interaksie van alkeen- en giskonsentrasie. Hierdie studie bring die kritieke rol wat Kp speel in die akkurate bepaling van KLa in waterige alkaansisteme met inerte vastestofsuspensies na vore. Dit stel verder ´n metodiek voor vir die akurate meting van en kwantifisering van beide Kp en KLa onder aerobiese toestande met betrekking tot vermengingstempo, alkaankonsentrasie, vastestofkonsentrasie en partikelgrootte. 2010-11-26T06:52:58Z 2010-12-15T10:34:29Z 2010-11-26T06:52:58Z 2010-12-15T10:34:29Z 2010-12 Thesis http://hdl.handle.net/10019.1/5329 en University of Stellenbosch 148 p. : ill. Stellenbosch : University of Stellenbosch