Summary: | Thesis (MScEng (Process Engineering))--University of Stellenbosch, 2010. === Thesis presented in partial fulfilment of the requirements for the degree
of
Master of Science in Engineering
(Extractive Metallurgy)
In the Department of Process Engineering
at the University of Stellenbosch === ENGLISH ABSTRACT: Multivariate statistical process control (MSPC) approaches are now widely used for performance monitoring, fault detection and diagnosis in chemical processes. Conventional MSPC approaches are based on latent variable projection methods such as principal component analysis and partial least squares. These methods are suitable for handling linearly correlated data sets, with minimal autocorrelation in the variables. Industrial plant data invariably violate these conditions, and several extensions to conventional MSPC methodologies have been proposed to account for these limitations.
In practical situations process data usually contain contributions at multiple scales because of different events occurring at different localizations in time and frequency. To account for such multiscale nature, monitoring techniques that decompose observed data at different scales are necessary. Hence the use of standard MSPC methodologies may lead to unreliable results due to false alarms and significant loss of information.
In this thesis a multiscale methodology based on the use of singular spectrum analysis is proposed. Singular spectrum analysis (SSA) is a linear method that extracts information from the short and noisy time series by decomposing the data into deterministic and stochastic components without prior knowledge of the dynamics affecting the time series. These components can be classified as independent additive time series of slowly varying trend, periodic series and aperiodic noise. SSA does this decomposition by projecting the original time series onto a data-adaptive vector basis obtained from the series itself based on principal component analysis (PCA).
The proposed method in this study treats each process variable as time series and the autocorrelation between the variables are explicitly accounted for. The data-adaptive nature of SSA makes the proposed method more flexible than other spectral techniques using fixed basis functions. Application of the proposed technique is demonstrated using simulated, industrial data and the Tennessee Eastman Challenge process. Also, a comparative analysis is given using the simulated and Tennessee Eastman process. It is found that in most cases the proposed method is superior in detecting process changes and faults of different magnitude accurately compared to classical statistical process control (SPC) based on latent variable methods as well as the wavelet-based multiscale SPC. === AFRIKAANSE OPSOMMING: Meerveranderlike statistiese prosesbeheerbenaderings (MSPB) word tans wydverspreid benut vir werkverrigtingkontrolering, foutopsporing en .diagnose in chemiese prosesse. Gebruiklike MSPB word op latente veranderlike projeksiemetodes soos hoofkomponentontleding en parsiele kleinste-kwadrate gebaseer. Hierdie metodes is geskik om lineer gekorreleerde datastelle, met minimale outokorrelasie, te hanteer. Nywerheidsaanlegdata oortree altyd hierdie voorwaardes, en verskeie MSPB is voorgestel om verantwoording te doen vir hierdie beperkings.
Prosesdata afkomstig van praktiese toestande bevat gewoonlik bydraes by veelvuldige skale, as gevolg van verskillende gebeurtenisse wat by verskillende lokaliserings in tyd en frekwensie voorkom. Kontroleringsmetodes wat waargenome data ontbind by verskillende skale is nodig om verantwoording te doen vir sodanige multiskaalgedrag. Derhalwe kan die gebruik van standaard-MSPB weens vals alarms en beduidende verlies van inligting tot onbetroubare resultate lei.
In hierdie tesis word . multiskaalmetodologie gebaseer op die gebruik van singuliere spektrumontleding (SSO) voorgestel. SSO is . lineere metode wat inligting uit die kort en ruiserige tydreeks ontrek deur die data in deterministiese en stochastiese komponente te ontbind, sonder enige voorkennis van die dinamika wat die tydreeks affekteer. Hierdie komponente kan as onafhanklike, additiewe tydreekse geklassifiseer word: stadigveranderende tendense, periodiese reekse en aperiodiese geruis. SSO vermag hierdie ontbinding deur die oorspronklike tydreeks na . data-aanpassende vektorbasis te projekteer, waar hierdie vektorbasis verkry is vanaf die tydreeks self, gebaseer op hoofkomponentontleding.
Die voorgestelde metode in hierdie studie hanteer elke prosesveranderlike as . tydreeks, en die outokorrelasie tussen veranderlikes word eksplisiet in berekening gebring. Aangesien die SSO metode aanpas tot data, is die voorgestelde metode meer buigsaam as ander spektraalmetodes wat gebruik maak van vaste basisfunksies. Toepassing van die voorgestelde tegniek word getoon met gesimuleerde prosesdata en die Tennessee Eastman-proses. . Vergelykende ontleding word ook gedoen met die gesimuleerde prosesdata en die Tennessee Eastman-proses. In die meeste gevalle is dit gevind dat die voorgestelde metode beter vaar om prosesveranderings en .foute met verskillende groottes op te spoor, in vergeleke met klassieke statistiese prosesbeheer (SP) gebaseer op latente veranderlikes, asook golfie-gebaseerde multiskaal SP.
|