Analysis and applications of the generalised Dyson mapping

Thesis (MSc)--Stellenbosch University, 2004. === ENGLISH ABSTRACT: In this thesis, generalized Dyson boson-fermion mappings are considered. These are techniques used in the analysis of the quantum many-body problem, and are instances of so-called boson expansion methods. A generalized Dyson boson...

Full description

Bibliographic Details
Main Author: Snyman, Izak
Other Authors: Geyer, H. B.
Format: Others
Language:en_ZA
Published: Stellenbosch : Stellenbosch University 2012
Subjects:
Online Access:http://hdl.handle.net/10019.1/49829
Description
Summary:Thesis (MSc)--Stellenbosch University, 2004. === ENGLISH ABSTRACT: In this thesis, generalized Dyson boson-fermion mappings are considered. These are techniques used in the analysis of the quantum many-body problem, and are instances of so-called boson expansion methods. A generalized Dyson boson-fermion mapping, or a Dyson mapping for short, is a one-to-one linear but non-unitary operator that can be applied to vectors representing the states of a many-fermion system. A vector representing a fermion system maps onto a vector that is most naturally interpreted as representing a state of a many-body system that contains both bosons and fermions. The motivation for doing such a mapping is the hope that the mapping will reveal some property of the system that simplifies its analysis and that was hidden in the original form. The aims of this thesis are 1. to review the theory of generalized Dyson boson-fermion mappings, 2. by considering a tutorial example, to demonstrate that it is feasible to implement the theory and 3. to find a useful application for a generalized Dyson boson-fermion mapping, by considering a non-trivial model, namely the Richardson model for superconductivity. The realization of the first two aims mainly involve the collecting together of ideas that have already appeared in the literature, into one coherent text. Some subtle points that were treated only briefly due to space restrictions in the journal publications where the theory was first expounded, are elaborated on in the present work. On the other hand, the analysis of the Richardson Hamiltonian that uses a Dyson mapping, goes beyond what has already appeared in the literature. It is the first time that a boson expansion technique is implemented for a system where the roles of both collective and non-collective fermion pairs are important. (The Dyson mapping associates bosons with Cooper pairs, while the fermions not bound in Cooper pairs result in fermions being present in the mapped system as well.) What is found is that the Dyson mapping uncovers non-trivial properties of the system. These properties aid the construction of time-independent perturbation expansions for the stationary states of the system, as well as time-dependent expansions for transition amplitudes between states. The time-independent expansions agree with results that other authors obtained through methods other than boson expansions. The time-dependent expansions, that one would be hard-pressed to develop without a Dyson mapping, might in future prove useful in understanding aspects of the dynamics of ultracold fermi gases, when time-dependent magnetic fields are used to vary the atom-atom interaction strenght. === AFRIKAANSE OPSOMMING: In hierdie tesis word veralgemeende Dyson boson-fermion-afbeeldings ondersoek. Hierdie afbeeldings word gebruik in die analise van die kwantum veeldeeltjie probleem, en is voorbeelde van sogenaamde boson-uitbreidingstegnieke. 'n Veralgemeende Dyson bosonfermion- afbeelding, of kortweg 'n Dyson afbeelding, is 'n een-tot-een, lineêre maar nie-unitêre operator wat inwerk op vektore wat toestande verteenwoordig van 'n veel-fermion sisteem. 'n Vektor wat 'n fermionsisteem verteenwoordig word so afgebeeld op 'n vektor waarvoor die mees natuurlike interpretasie is dat dit 'n toestand verteenwoordig van 'n sisteem waarin beide bosone en fermione aanwesig is. So 'n afbeelding word gewoonlik gemaak in die hoop dat eienskappe van die sisteem, wat versteek was in die oorspronklike weergawe, voor-die-hand-liggend is na die afbeelding. Hierdie tesis het ten doel 1. om die teorie van veralgemeende Dyson boson-fermion-afbeeldings te hersien, 2. om 'n eenvoudige voorbeeld deur te werk, en so te demonstreer dat die teorie sonder moeite geïmplimenteer kan word en 3. om 'n nuttige toepassing te vind vir 'n veralgemeende Dyson boson-fermion-afbeelding deur 'n nie-triviale model, naamlik die Richardson model vir supergeleiding, te ondersoek. Die eerste twee van hierdie doelwitte behels hoofsaaklik dat idees wat reeds in die literatuur verskyn het, saamgevat word in een koherente teks. Sommige subtiele punte wat, vanwee beperkte ruimte, slegs kortliks bespreek is in die joernaalartikels waarin die teorie oorspronklik verskyn het, word in hierdie tesis meer breedvoering bespreek. Daarteenoor verteenwoordig die analise van die Richardson model met behulp van 'n Dyson afbeelding 'n nuwe bydra. Dit is naamlik die eerste keer dat 'n bosonuitbreiding ingespan word vir 'n sisteem waar sowel kollektiewe as nie-kollektiewe fermionpare 'n belangrike rol speel. (Die Dyson afbeelding assosieer bosone met die oorspronklike sisteem se Cooper pare, terwyl die fermione wat in die oorspronklike sisteem nie tot Cooper pare gebind is nie, sorg dat daar ook fermione teenwoordig is in die afgebeelde sisteem.) Ons vind dat die Dyson afbeelding nie-triviale eienskappe van die sisteem aan die lig bring. Hierdie eienskappe is nuttig vir die konstruksie van beide tyd-onafhanklike steuringsreekse vir die stasionêre toestande van die sisteem en vir tyd-afhanklike steuringsreekse vir oorgangsamplitudes tussen toestande. Die tyd-onafhanklike uitbreidings stem ooreen met resultate wat ander outeurs afgelei het sonder die gebruik van 'n Dyson afbeelding. Die tyd-afhanklike uitbreidings, wat kwalik afgelei kan word sonder 'n Dyson afbeelding, mag vorentoe nuttig wees om aspekte van die dinamika van baie koue Fermi gasse te verstaan, wanneer tydafhanklike magneetvelde gebruik word om die inter-atoomwisselwerking te manipuleer.