Modelling chaotic systems with neural networks : application to seismic event predicting in gold mines
Thesis (MSc (Computer Science))-- University of Stellenbosch, 2001. === ENGLISH ABSTRACT: This thesis explores the use of neural networks for predicting difficult, real-world time series. We first establish and demonstrate methods for characterising, modelling and predicting well-known systems. Th...
Main Author: | |
---|---|
Other Authors: | |
Language: | en_ZA |
Published: |
Stellenbosch : University of Stellenbosch
2010
|
Subjects: | |
Online Access: | http://hdl.handle.net/10019.1/4580 |
id |
ndltd-netd.ac.za-oai-union.ndltd.org-sun-oai-scholar.sun.ac.za-10019.1-4580 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-netd.ac.za-oai-union.ndltd.org-sun-oai-scholar.sun.ac.za-10019.1-45802016-01-29T04:03:20Z Modelling chaotic systems with neural networks : application to seismic event predicting in gold mines Van Zyl, Jacobus Omlin, Christian W. Van der Walt, Andries P. J. University of Stellenbosch. Faculty of Science. Dept. of Mathematical Sciences. Computer Science. Attractors Seismic monitoring and prediction Seismic time series Dissertations -- Computer science Theses -- Computer science Neural networks (Computer science) Chaotic behavior in systems Seismic event location -- Data processing Thesis (MSc (Computer Science))-- University of Stellenbosch, 2001. ENGLISH ABSTRACT: This thesis explores the use of neural networks for predicting difficult, real-world time series. We first establish and demonstrate methods for characterising, modelling and predicting well-known systems. The real-world system we explore is seismic event data obtained from a South African gold mine. We show that this data is chaotic. After preprocessing the raw data, we show that neural networks are able to predict seismic activity reasonably well. AFRIKAANSE OPSOMMING: Hierdie tesis ondersoek die gebruik van neurale netwerke om komplekse, werklik bestaande tydreekse te voorspel. Ter aanvang noem en demonstreer ons metodes vir die karakterisering, modelering en voorspelling van bekende stelsels. Ons gaan dan voort en ondersoek seismiese gebeurlikheidsdata afkomstig van ’n Suid-Afrikaanse goudmyn. Ons wys dat die data chaoties van aard is. Nadat ons die rou data verwerk, wys ons dat neurale netwerke die tydreekse redelik goed kan voorspel. Integrated Seismic Systems International 2010-08-31T13:33:20Z 2010-08-31T13:33:20Z 2001-12 Thesis http://hdl.handle.net/10019.1/4580 en_ZA University of Stellenbosch Stellenbosch : University of Stellenbosch |
collection |
NDLTD |
language |
en_ZA |
sources |
NDLTD |
topic |
Attractors Seismic monitoring and prediction Seismic time series Dissertations -- Computer science Theses -- Computer science Neural networks (Computer science) Chaotic behavior in systems Seismic event location -- Data processing |
spellingShingle |
Attractors Seismic monitoring and prediction Seismic time series Dissertations -- Computer science Theses -- Computer science Neural networks (Computer science) Chaotic behavior in systems Seismic event location -- Data processing Van Zyl, Jacobus Modelling chaotic systems with neural networks : application to seismic event predicting in gold mines |
description |
Thesis (MSc (Computer Science))-- University of Stellenbosch, 2001. === ENGLISH ABSTRACT: This thesis explores the use of neural networks for predicting difficult, real-world time series. We
first establish and demonstrate methods for characterising, modelling and predicting well-known
systems. The real-world system we explore is seismic event data obtained from a South African
gold mine. We show that this data is chaotic. After preprocessing the raw data, we show that neural
networks are able to predict seismic activity reasonably well. === AFRIKAANSE OPSOMMING: Hierdie tesis ondersoek die gebruik van neurale netwerke om komplekse, werklik bestaande tydreekse
te voorspel. Ter aanvang noem en demonstreer ons metodes vir die karakterisering, modelering
en voorspelling van bekende stelsels. Ons gaan dan voort en ondersoek seismiese gebeurlikheidsdata
afkomstig van ’n Suid-Afrikaanse goudmyn. Ons wys dat die data chaoties van aard
is. Nadat ons die rou data verwerk, wys ons dat neurale netwerke die tydreekse redelik goed kan
voorspel. === Integrated Seismic Systems International |
author2 |
Omlin, Christian W. |
author_facet |
Omlin, Christian W. Van Zyl, Jacobus |
author |
Van Zyl, Jacobus |
author_sort |
Van Zyl, Jacobus |
title |
Modelling chaotic systems with neural networks : application to seismic event predicting in gold mines |
title_short |
Modelling chaotic systems with neural networks : application to seismic event predicting in gold mines |
title_full |
Modelling chaotic systems with neural networks : application to seismic event predicting in gold mines |
title_fullStr |
Modelling chaotic systems with neural networks : application to seismic event predicting in gold mines |
title_full_unstemmed |
Modelling chaotic systems with neural networks : application to seismic event predicting in gold mines |
title_sort |
modelling chaotic systems with neural networks : application to seismic event predicting in gold mines |
publisher |
Stellenbosch : University of Stellenbosch |
publishDate |
2010 |
url |
http://hdl.handle.net/10019.1/4580 |
work_keys_str_mv |
AT vanzyljacobus modellingchaoticsystemswithneuralnetworksapplicationtoseismiceventpredictingingoldmines |
_version_ |
1718164605625171968 |