Modelling chaotic systems with neural networks : application to seismic event predicting in gold mines

Thesis (MSc (Computer Science))-- University of Stellenbosch, 2001. === ENGLISH ABSTRACT: This thesis explores the use of neural networks for predicting difficult, real-world time series. We first establish and demonstrate methods for characterising, modelling and predicting well-known systems. Th...

Full description

Bibliographic Details
Main Author: Van Zyl, Jacobus
Other Authors: Omlin, Christian W.
Language:en_ZA
Published: Stellenbosch : University of Stellenbosch 2010
Subjects:
Online Access:http://hdl.handle.net/10019.1/4580
id ndltd-netd.ac.za-oai-union.ndltd.org-sun-oai-scholar.sun.ac.za-10019.1-4580
record_format oai_dc
spelling ndltd-netd.ac.za-oai-union.ndltd.org-sun-oai-scholar.sun.ac.za-10019.1-45802016-01-29T04:03:20Z Modelling chaotic systems with neural networks : application to seismic event predicting in gold mines Van Zyl, Jacobus Omlin, Christian W. Van der Walt, Andries P. J. University of Stellenbosch. Faculty of Science. Dept. of Mathematical Sciences. Computer Science. Attractors Seismic monitoring and prediction Seismic time series Dissertations -- Computer science Theses -- Computer science Neural networks (Computer science) Chaotic behavior in systems Seismic event location -- Data processing Thesis (MSc (Computer Science))-- University of Stellenbosch, 2001. ENGLISH ABSTRACT: This thesis explores the use of neural networks for predicting difficult, real-world time series. We first establish and demonstrate methods for characterising, modelling and predicting well-known systems. The real-world system we explore is seismic event data obtained from a South African gold mine. We show that this data is chaotic. After preprocessing the raw data, we show that neural networks are able to predict seismic activity reasonably well. AFRIKAANSE OPSOMMING: Hierdie tesis ondersoek die gebruik van neurale netwerke om komplekse, werklik bestaande tydreekse te voorspel. Ter aanvang noem en demonstreer ons metodes vir die karakterisering, modelering en voorspelling van bekende stelsels. Ons gaan dan voort en ondersoek seismiese gebeurlikheidsdata afkomstig van ’n Suid-Afrikaanse goudmyn. Ons wys dat die data chaoties van aard is. Nadat ons die rou data verwerk, wys ons dat neurale netwerke die tydreekse redelik goed kan voorspel. Integrated Seismic Systems International 2010-08-31T13:33:20Z 2010-08-31T13:33:20Z 2001-12 Thesis http://hdl.handle.net/10019.1/4580 en_ZA University of Stellenbosch Stellenbosch : University of Stellenbosch
collection NDLTD
language en_ZA
sources NDLTD
topic Attractors
Seismic monitoring and prediction
Seismic time series
Dissertations -- Computer science
Theses -- Computer science
Neural networks (Computer science)
Chaotic behavior in systems
Seismic event location -- Data processing
spellingShingle Attractors
Seismic monitoring and prediction
Seismic time series
Dissertations -- Computer science
Theses -- Computer science
Neural networks (Computer science)
Chaotic behavior in systems
Seismic event location -- Data processing
Van Zyl, Jacobus
Modelling chaotic systems with neural networks : application to seismic event predicting in gold mines
description Thesis (MSc (Computer Science))-- University of Stellenbosch, 2001. === ENGLISH ABSTRACT: This thesis explores the use of neural networks for predicting difficult, real-world time series. We first establish and demonstrate methods for characterising, modelling and predicting well-known systems. The real-world system we explore is seismic event data obtained from a South African gold mine. We show that this data is chaotic. After preprocessing the raw data, we show that neural networks are able to predict seismic activity reasonably well. === AFRIKAANSE OPSOMMING: Hierdie tesis ondersoek die gebruik van neurale netwerke om komplekse, werklik bestaande tydreekse te voorspel. Ter aanvang noem en demonstreer ons metodes vir die karakterisering, modelering en voorspelling van bekende stelsels. Ons gaan dan voort en ondersoek seismiese gebeurlikheidsdata afkomstig van ’n Suid-Afrikaanse goudmyn. Ons wys dat die data chaoties van aard is. Nadat ons die rou data verwerk, wys ons dat neurale netwerke die tydreekse redelik goed kan voorspel. === Integrated Seismic Systems International
author2 Omlin, Christian W.
author_facet Omlin, Christian W.
Van Zyl, Jacobus
author Van Zyl, Jacobus
author_sort Van Zyl, Jacobus
title Modelling chaotic systems with neural networks : application to seismic event predicting in gold mines
title_short Modelling chaotic systems with neural networks : application to seismic event predicting in gold mines
title_full Modelling chaotic systems with neural networks : application to seismic event predicting in gold mines
title_fullStr Modelling chaotic systems with neural networks : application to seismic event predicting in gold mines
title_full_unstemmed Modelling chaotic systems with neural networks : application to seismic event predicting in gold mines
title_sort modelling chaotic systems with neural networks : application to seismic event predicting in gold mines
publisher Stellenbosch : University of Stellenbosch
publishDate 2010
url http://hdl.handle.net/10019.1/4580
work_keys_str_mv AT vanzyljacobus modellingchaoticsystemswithneuralnetworksapplicationtoseismiceventpredictingingoldmines
_version_ 1718164605625171968