Summary: | Thesis (MScEng (Electrical and Electronic Engineering))--University of Stellenbosch, 2006. === An analysis of the attitude determination and control system required for a
small geostationary satellite is performed in this thesis. A three axis quaternion
feedback reaction wheel control system is the primary control system used to meet the
stringent accuracy requirements. A momentum bias controller is also evaluated to
provide redundancy and to extend actuator life.
Momentum dumping is preformed by magnetic torque rods using a crossproduct
controller. Performance of three axis thruster control is also evaluated. A full
state Extended Kalman filter is used to determine attitude and body angular rates
during normal operation whereas a Multiplicative Extended Kalman Filter is used
during attitude manoeuvres.
An analytical orbit control study is also performed to calculate the propellant
required to perform station-keeping, for a specific sub-satellite location over a ten
year period. Finally an investigation on the effects caused by thruster misalignment,
on satellite attitude is also performed.
|