A study of the burrowing sandprawn Callianassa kraussi Stebbing (Crustacea - Decapoda - Thalassinidea)

The distribution of Callianassa kraussi in southern Africa extends from Lamberts Bay on the west coast to San Martinho in Mocambique. This represents a northerly extension of the range from the previous known limit of Inhaca Island. In this area 59 localities were visited and records obtained for an...

Full description

Bibliographic Details
Main Author: Forbes, Anthony Tonks
Format: Others
Language:English
Published: Rhodes University 1974
Subjects:
Online Access:http://hdl.handle.net/10962/d1011866
Description
Summary:The distribution of Callianassa kraussi in southern Africa extends from Lamberts Bay on the west coast to San Martinho in Mocambique. This represents a northerly extension of the range from the previous known limit of Inhaca Island. In this area 59 localities were visited and records obtained for an additional 16. Three areas were selected for detailed study. These were the west Kleinemonde estuary, which is normally closed off from the sea by a sand bar and the open Swartkops estuary both on the southeastern Cape coast, and the Swartvlei system, which consists of a lake connected to the sea by a channel which closes intermittently, on the southern Cape coast. The nature of the burrows constructed by C. kraussi was investigated in these areas. Burrow complexes may have up to nine entrances but more commonly two to four. Laboratory studies suggest that the number of entrances does not exceed the number of prawns present and consequently burrow opening counts will give an estimate of population density. Water movement can result in the closing off of burrows while strong water and sand movement will exclude C.kraussi from an area. C.kraussi is also excluded from areas which have very coarse substrates. A three year regular sampling program showed that C.kraussi breeds mainly in winter/spring with a smaller breeding peak in summer. Egg development time at 20°C in a salinity of 35° /₀₀ is 30-33 days. There are two larval stages which last 3-5 days. Development time of the eggs is tripled at temperatures of 13-15°C while larval development time is extended to 9-14 days. Development is possibly slightly accelerated at 25 ± 3°C but the number of eggs hatching is markedly reduced. Larval development times were similar to those at 20° and 35°/₀₀. There are no planktonic larval stages. Growth was more rapid and greater size was attained in the open Swartkops estuary than in the closed Kleinemonde estuary. Prawns hatching in winter/spring breed for the first time in the following summer at an age of about 16 months and then again in the following winter/spring at an age of about 2 years. Prawns hatching in summer breed in the following winter at an age of about 18 months and then again in the immediately following summer. Longevity in both sexes is about 2 years. Dispersal is accomplished by migration of the post-larval juvenile phases at an age of 3-5 months. Non-selfmaintaining populations exist in areas where salinities are too low to permit breeding. Population densities were found to vary markedly in different areas. Investigations of osmotic and ionic regulation showed that C.kraussi is a strong hyper-regulator and thus distinct from any other known species in the genus. Volume regulatory ability is well developed and depends on variable rates of urine production. Salt loss in dilutions occurs almost equally via the gills and the urine. The general responses of C.kraussi to dilutions of sea water are discussed. Various suggestions for conservation measures based on the distribution and iife cycle of C.kraussi were made. The factors affecting the distribution of C.kraussi are discussed. The problem of the larval development in C.kraussi was discussed in relation to reviews of larval types of benthic invertebrates. The importance of the burrow, the possible route by which C.kraussi has invaded estuaries and the differences between open and closed estuaries as shown by the effects on C.kraussi were discussed.