Exotic deposits derived from porphyry copper systems in Chile
The exotic orebodies related to cal-alkaline porphyry copper deposits. are sub-horizontal lenticular bodies of secondary copper minerals that impregnate Tertiary gravels and bedrock of different ages. They lie immediately downslope of the porphyry copper deposits, that is to say. they are related to...
Main Author: | |
---|---|
Format: | Others |
Language: | English |
Published: |
Rhodes University
1996
|
Subjects: | |
Online Access: | http://hdl.handle.net/10962/d1011149 |
id |
ndltd-netd.ac.za-oai-union.ndltd.org-rhodes-vital-5050 |
---|---|
record_format |
oai_dc |
collection |
NDLTD |
language |
English |
format |
Others
|
sources |
NDLTD |
topic |
Porphyry -- Chile Copper mines and mining -- Chile Copper ores -- Chile |
spellingShingle |
Porphyry -- Chile Copper mines and mining -- Chile Copper ores -- Chile Diaz Acevedo, Nelson Simon Exotic deposits derived from porphyry copper systems in Chile |
description |
The exotic orebodies related to cal-alkaline porphyry copper deposits. are sub-horizontal lenticular bodies of secondary copper minerals that impregnate Tertiary gravels and bedrock of different ages. They lie immediately downslope of the porphyry copper deposits, that is to say. they are related to the propylitic halo of the main deposits, and are considered to have originated with the deposition of copper minerals from solutions that overflowed during the secondary enrichment process. Supergene alteration took place between the late Oligocene and Miocene, by which time both orehodies (exotic and porphyry copper) were established. The paucity of tile denudation since the Miocene in the Andean segment from 21º to 26º latitude S. due to the dominance of a hyperarid climate explains the remarkable preservation of the shallow porphyry copper systems, supergene enriched blankets and associated deposits. This is reflected in the limonites, where the typical boxworks have been partially or totally destroyed on surface by the superleaching. As a result of the lateral migration of the copper-bearing solutions, the exotic deposits show a zonation. alteration and mineralization whose characteristics depend among other factors. on the reactivity of the bedrocks and the Cu/S ratio of the mother deposit. In these deposits three zones can be recognized: Proximal (0 to 2 km Intermediate (2 to 3) and Distal (3 to 8-14 km) with palaeodrainage control. The associations and mineralogical abundance are related to the climate (rain. temperature). In some deposits two important units are detected and they are the Cu-phosphates and Cu-lixiviable (to sulphuric acid) units. The size of tile Chilean exotic deposits varies between 100 and 3.500.000 tons of copper, with a total known resource of 8 M tons of copper. The large exotic deposits are comparable to the resources of a medium-sized porphyry copper- type deposit. The discovery of the exotic deposits is related to the exploration of porphyry copper deposits, where a mass balance of the leached column must be done. Moreover the lithology and alteration of the propylitic halo. permeability, structures, geophysics and geochemistry should be considered. The diorite model is not compatible with a supergene enrichment process, expressed by the absence of colour anomalies, exotic deposits and in the presence of secondary minerals like jarosite, which is coherent with the pyrite deficiency of the system. The projects are for exploitation of reserves by open pit methods. The projects plan to extract and to crush copper oxide ore which will he pre-treated with concentrated sulphuric acid prior to heap leaching, solvent extraction and electrowinning. The copper output varies between 10,000 and 50,000 ton per year of catilode copper. The total investment varies between 20 and 100 millions dollars. For project calculations, estimation of 65 % - 82 % copper recovery and 37 - 40 kg/ton net acid consumption can be used due to the nature of ore. The leaching time is estimated as 30 to 180 days for heaps of 4,5 to 30 metres high. As a result of this, the plant capacity is determined by an annual equivalent of 10,000 to 25,000 ton Cu per year. Pit planning has heen carried out using diverse software on the basis of 5 x 5 x 5 m and 10 x 10 x 10 m block models, evaluated using a kriging package built into the program, giving an overall waste/ore ratio (induding pre-stripping) of 0: I (in an outcrop) to 3: I. The location of the mine and plant sites are associated with the porphyry copper in production, for this the already installed facilities can be used. So there is no need to build a new mine camp or access. The environmental impact is summarized relating to the characterization of the physical, biological and socio-cuitural effects, using the framework of the Base Line study and the Impact evaluation derived from the construction and project operation phases. The conclusions and recommendations will diminish, mitigate and/or eliminate impact derived from the specific activities. |
author |
Diaz Acevedo, Nelson Simon |
author_facet |
Diaz Acevedo, Nelson Simon |
author_sort |
Diaz Acevedo, Nelson Simon |
title |
Exotic deposits derived from porphyry copper systems in Chile |
title_short |
Exotic deposits derived from porphyry copper systems in Chile |
title_full |
Exotic deposits derived from porphyry copper systems in Chile |
title_fullStr |
Exotic deposits derived from porphyry copper systems in Chile |
title_full_unstemmed |
Exotic deposits derived from porphyry copper systems in Chile |
title_sort |
exotic deposits derived from porphyry copper systems in chile |
publisher |
Rhodes University |
publishDate |
1996 |
url |
http://hdl.handle.net/10962/d1011149 |
work_keys_str_mv |
AT diazacevedonelsonsimon exoticdepositsderivedfromporphyrycoppersystemsinchile |
_version_ |
1718501156706058240 |
spelling |
ndltd-netd.ac.za-oai-union.ndltd.org-rhodes-vital-50502017-07-20T04:13:21ZExotic deposits derived from porphyry copper systems in ChileDiaz Acevedo, Nelson SimonPorphyry -- ChileCopper mines and mining -- ChileCopper ores -- ChileThe exotic orebodies related to cal-alkaline porphyry copper deposits. are sub-horizontal lenticular bodies of secondary copper minerals that impregnate Tertiary gravels and bedrock of different ages. They lie immediately downslope of the porphyry copper deposits, that is to say. they are related to the propylitic halo of the main deposits, and are considered to have originated with the deposition of copper minerals from solutions that overflowed during the secondary enrichment process. Supergene alteration took place between the late Oligocene and Miocene, by which time both orehodies (exotic and porphyry copper) were established. The paucity of tile denudation since the Miocene in the Andean segment from 21º to 26º latitude S. due to the dominance of a hyperarid climate explains the remarkable preservation of the shallow porphyry copper systems, supergene enriched blankets and associated deposits. This is reflected in the limonites, where the typical boxworks have been partially or totally destroyed on surface by the superleaching. As a result of the lateral migration of the copper-bearing solutions, the exotic deposits show a zonation. alteration and mineralization whose characteristics depend among other factors. on the reactivity of the bedrocks and the Cu/S ratio of the mother deposit. In these deposits three zones can be recognized: Proximal (0 to 2 km Intermediate (2 to 3) and Distal (3 to 8-14 km) with palaeodrainage control. The associations and mineralogical abundance are related to the climate (rain. temperature). In some deposits two important units are detected and they are the Cu-phosphates and Cu-lixiviable (to sulphuric acid) units. The size of tile Chilean exotic deposits varies between 100 and 3.500.000 tons of copper, with a total known resource of 8 M tons of copper. The large exotic deposits are comparable to the resources of a medium-sized porphyry copper- type deposit. The discovery of the exotic deposits is related to the exploration of porphyry copper deposits, where a mass balance of the leached column must be done. Moreover the lithology and alteration of the propylitic halo. permeability, structures, geophysics and geochemistry should be considered. The diorite model is not compatible with a supergene enrichment process, expressed by the absence of colour anomalies, exotic deposits and in the presence of secondary minerals like jarosite, which is coherent with the pyrite deficiency of the system. The projects are for exploitation of reserves by open pit methods. The projects plan to extract and to crush copper oxide ore which will he pre-treated with concentrated sulphuric acid prior to heap leaching, solvent extraction and electrowinning. The copper output varies between 10,000 and 50,000 ton per year of catilode copper. The total investment varies between 20 and 100 millions dollars. For project calculations, estimation of 65 % - 82 % copper recovery and 37 - 40 kg/ton net acid consumption can be used due to the nature of ore. The leaching time is estimated as 30 to 180 days for heaps of 4,5 to 30 metres high. As a result of this, the plant capacity is determined by an annual equivalent of 10,000 to 25,000 ton Cu per year. Pit planning has heen carried out using diverse software on the basis of 5 x 5 x 5 m and 10 x 10 x 10 m block models, evaluated using a kriging package built into the program, giving an overall waste/ore ratio (induding pre-stripping) of 0: I (in an outcrop) to 3: I. The location of the mine and plant sites are associated with the porphyry copper in production, for this the already installed facilities can be used. So there is no need to build a new mine camp or access. The environmental impact is summarized relating to the characterization of the physical, biological and socio-cuitural effects, using the framework of the Base Line study and the Impact evaluation derived from the construction and project operation phases. The conclusions and recommendations will diminish, mitigate and/or eliminate impact derived from the specific activities.Rhodes UniversityFaculty of Science, Geology1996ThesisMastersMSc118 p.pdfvital:5050http://hdl.handle.net/10962/d1011149EnglishDiaz Acevedo, Nelson Simon |