Summary: | Simulation is a complex task with many research applications - chiey as a research tool, to test and evaluate hypothetical scenarios. Though many simulations execute similar operations and utilise similar data, there are few simulation frameworks or toolkits that allow researchers to rapidly develop their concepts. Those that are available to researchers are limited in scope, or use old technology that is no longer useful to modern researchers. As a result of this, many researchers build their own simulations without a framework, wasting time and resources on a system that could already cater for the majority of their simulation's requirements. In this work, a system is proposed for the creation of a scalable, dynamic-resolution network simulation framework that provides scalable scope for researchers, using modern technologies and languages. This framework should allow researchers to rapidly develop a broad range of semantically-rich simulations, without the necessity of superor grid-computers or clusters. Design and implementation are discussed and alternative network simulations are compared to the proposed framework. A series of simulations, focusing on malware, is run on an implementation of this framework, and the results are compared to expectations for the outcomes of those simulations. In conclusion, a critical review of the simulator is made, considering any extensions or shortcomings that need to be addressed.
|