Field evaluation of the use of select entomopathogenic fungal isolates as microbial control agents of the soil-dwelling life stages of a key South African citrus pest, Thaumatotibia leucotreta (Meyrick) (Lepidoptera: Tortricidae)

The control of false codling moth (FCM), Thaumatotibia leucotreta (Meyrick, 1912) (Lepidoptera: Tortricidae), in citrus orchards is strongly reliant on the use of integrated pest management as key export markets impose stringent chemical restrictions on exported fruit and have a strict no entry poli...

Full description

Bibliographic Details
Main Author: Coombes, Candice Anne
Format: Others
Language:English
Published: Rhodes University 2016
Online Access:http://hdl.handle.net/10962/507
id ndltd-netd.ac.za-oai-union.ndltd.org-rhodes-vital-19965
record_format oai_dc
spelling ndltd-netd.ac.za-oai-union.ndltd.org-rhodes-vital-199652017-09-29T16:01:39ZField evaluation of the use of select entomopathogenic fungal isolates as microbial control agents of the soil-dwelling life stages of a key South African citrus pest, Thaumatotibia leucotreta (Meyrick) (Lepidoptera: Tortricidae)Coombes, Candice AnneThe control of false codling moth (FCM), Thaumatotibia leucotreta (Meyrick, 1912) (Lepidoptera: Tortricidae), in citrus orchards is strongly reliant on the use of integrated pest management as key export markets impose stringent chemical restrictions on exported fruit and have a strict no entry policy towards this phytosanitary pest. Most current, registered control methods target the above-ground life stages of FCM, not the soil-dwelling life stages. As such, entomopathogenic fungi which are ubiquitous, percutaneously infective soil-borne microbes that have been used successfully as control agents worldwide, present ideal candidates as additional control agents. Following an initial identification of 62 fungal entomopathogens isolated from soil collected from citrus orchards in the Eastern Cape Province, South Africa, further laboratory research has highlighted three isolates as having the greatest control potential against FCM subterranean life stages: Metarhizium anisopliae G 11 3 L6 (Ma1), M. anisopliae FCM Ar 23 B3 (Ma2) and Beauveria bassiana G Ar 17 B3 (Bb1). These isolates are capable of causing above 80% laboratory-induced mycosis of FCM fifth instars. Whether this level of efficacy was obtainable under sub-optimal and fluctuating field conditions was unknown. Thus, this thesis aimed to address the following issues with regards to the three most laboratory-virulent fungal isolates: field efficacy, field persistence, optimal application rate, application timing, environmental dependency, compatibility with fungicides and the use of different wetting agents to promote field efficacy. Following fungal application to one hectare treatment blocks in the field, FCM infestation within fruit was reduced by 28.3% to 81.7%. Isolate Bb1 performed best under moderate to high soil moisture whilst Ma2 was more effective under low soil moisture conditions. All isolates, with the exception of Ma2 at one site, were recorded in the soil five months post-application. None of the wetting agents tested were found to be highly toxic to fungal germination and similar physical suspension characteristics were observed. Fungicide toxicity varied amongst isolates and test conditions. However, only Dithane (a.i. mancozeb) was considered incompatible with isolate Ma2. The implication of these results and the way forward is discussed. This study is the first report of the field efficacy of three laboratory-virulent fungal isolates applied to the soil of conventional citrus orchards against FCM soil-dwelling life stages. As such, it provides a foundation on which future research can build to ensure the development and commercialisation of a cost-effective and consistently reliable product.Rhodes UniversityFaculty of Science, Zoology and Entomology2016ThesisDoctoralPhD195 leavespdfhttp://hdl.handle.net/10962/507vital:19965EnglishCoombes, Candice Anne
collection NDLTD
language English
format Others
sources NDLTD
description The control of false codling moth (FCM), Thaumatotibia leucotreta (Meyrick, 1912) (Lepidoptera: Tortricidae), in citrus orchards is strongly reliant on the use of integrated pest management as key export markets impose stringent chemical restrictions on exported fruit and have a strict no entry policy towards this phytosanitary pest. Most current, registered control methods target the above-ground life stages of FCM, not the soil-dwelling life stages. As such, entomopathogenic fungi which are ubiquitous, percutaneously infective soil-borne microbes that have been used successfully as control agents worldwide, present ideal candidates as additional control agents. Following an initial identification of 62 fungal entomopathogens isolated from soil collected from citrus orchards in the Eastern Cape Province, South Africa, further laboratory research has highlighted three isolates as having the greatest control potential against FCM subterranean life stages: Metarhizium anisopliae G 11 3 L6 (Ma1), M. anisopliae FCM Ar 23 B3 (Ma2) and Beauveria bassiana G Ar 17 B3 (Bb1). These isolates are capable of causing above 80% laboratory-induced mycosis of FCM fifth instars. Whether this level of efficacy was obtainable under sub-optimal and fluctuating field conditions was unknown. Thus, this thesis aimed to address the following issues with regards to the three most laboratory-virulent fungal isolates: field efficacy, field persistence, optimal application rate, application timing, environmental dependency, compatibility with fungicides and the use of different wetting agents to promote field efficacy. Following fungal application to one hectare treatment blocks in the field, FCM infestation within fruit was reduced by 28.3% to 81.7%. Isolate Bb1 performed best under moderate to high soil moisture whilst Ma2 was more effective under low soil moisture conditions. All isolates, with the exception of Ma2 at one site, were recorded in the soil five months post-application. None of the wetting agents tested were found to be highly toxic to fungal germination and similar physical suspension characteristics were observed. Fungicide toxicity varied amongst isolates and test conditions. However, only Dithane (a.i. mancozeb) was considered incompatible with isolate Ma2. The implication of these results and the way forward is discussed. This study is the first report of the field efficacy of three laboratory-virulent fungal isolates applied to the soil of conventional citrus orchards against FCM soil-dwelling life stages. As such, it provides a foundation on which future research can build to ensure the development and commercialisation of a cost-effective and consistently reliable product.
author Coombes, Candice Anne
spellingShingle Coombes, Candice Anne
Field evaluation of the use of select entomopathogenic fungal isolates as microbial control agents of the soil-dwelling life stages of a key South African citrus pest, Thaumatotibia leucotreta (Meyrick) (Lepidoptera: Tortricidae)
author_facet Coombes, Candice Anne
author_sort Coombes, Candice Anne
title Field evaluation of the use of select entomopathogenic fungal isolates as microbial control agents of the soil-dwelling life stages of a key South African citrus pest, Thaumatotibia leucotreta (Meyrick) (Lepidoptera: Tortricidae)
title_short Field evaluation of the use of select entomopathogenic fungal isolates as microbial control agents of the soil-dwelling life stages of a key South African citrus pest, Thaumatotibia leucotreta (Meyrick) (Lepidoptera: Tortricidae)
title_full Field evaluation of the use of select entomopathogenic fungal isolates as microbial control agents of the soil-dwelling life stages of a key South African citrus pest, Thaumatotibia leucotreta (Meyrick) (Lepidoptera: Tortricidae)
title_fullStr Field evaluation of the use of select entomopathogenic fungal isolates as microbial control agents of the soil-dwelling life stages of a key South African citrus pest, Thaumatotibia leucotreta (Meyrick) (Lepidoptera: Tortricidae)
title_full_unstemmed Field evaluation of the use of select entomopathogenic fungal isolates as microbial control agents of the soil-dwelling life stages of a key South African citrus pest, Thaumatotibia leucotreta (Meyrick) (Lepidoptera: Tortricidae)
title_sort field evaluation of the use of select entomopathogenic fungal isolates as microbial control agents of the soil-dwelling life stages of a key south african citrus pest, thaumatotibia leucotreta (meyrick) (lepidoptera: tortricidae)
publisher Rhodes University
publishDate 2016
url http://hdl.handle.net/10962/507
work_keys_str_mv AT coombescandiceanne fieldevaluationoftheuseofselectentomopathogenicfungalisolatesasmicrobialcontrolagentsofthesoildwellinglifestagesofakeysouthafricancitruspestthaumatotibialeucotretameyricklepidopteratortricidae
_version_ 1718541460793458688