Kinetics of the photocatalytic reduction of platinum (IV) in a batch and flow reactor / Adéle Petzer

Semiconductor photocatalysis has received considerable attention in recent years as an alternative for treating water polluted with hazardous organic chemicals. The process, as a means of removal of persistent water contaminants such as pesticides, which exhibit chemical stability and resistance to...

Full description

Bibliographic Details
Main Author: Petzer, Adéle
Published: North-West University 2012
Subjects:
Online Access:http://hdl.handle.net/10394/7612
id ndltd-netd.ac.za-oai-union.ndltd.org-nwu-oai-dspace.nwu.ac.za-10394-7612
record_format oai_dc
spelling ndltd-netd.ac.za-oai-union.ndltd.org-nwu-oai-dspace.nwu.ac.za-10394-76122014-04-16T03:53:12ZKinetics of the photocatalytic reduction of platinum (IV) in a batch and flow reactor / Adéle PetzerPetzer, AdéleSemiconductorPhotocatalysisPhotocatalyticReductionPlatinumLangmuir-HinshelwoodKineticTiO2EthanolSemiconductor photocatalysis has received considerable attention in recent years as an alternative for treating water polluted with hazardous organic chemicals. The process, as a means of removal of persistent water contaminants such as pesticides, which exhibit chemical stability and resistance to biodegradation, has attracted the attention of many researchers. To a lesser extent, it has also been studied for decontamination of water containing toxic metals. Precious and common metals enter waters through washing, rinsing, pickling and surface treatment procedures of industrial processes, such as hydrometallurgy, plating and photography. As a result we are living in an environment with a multitude of potentially harmful toxic metal ions. In contrast, the demand for metals increases significantly with the development and growth of industry. Even though research on the photocatalytic recovery of waste and noble metals has escalated in the past 10 years, the practical implementation of these processes is not yet justified. The successful implementation of large scale reactors, for industrial application, has to consider several reactor design parameters that must be optimised, such as reactor geometry and the utilization of radiated energy. In this study the effect of various parameters such as initial platinum(IV)chloride concentrations, initial sacrificial reducing agent (ethanol) concentrations, catalyst (TiO2) concentration, pH, temperature and light intensity has been investigated as a first step towards optimising a photocatalytic batch and photocatalytic flow reactor. Langmuir–Hinshelwood kinetics has been applied to calculate the photocatalytic rate constant kr as well as the adsorption equilibrium constant Ke for both the initial platinum(IV) dependency as well as the initial ethanol concentration dependency. The results in this study may be used in future work for the optimisation and comparison of both batch and flow reactors towards the industrial implementation of these processes.Thesis (M.Sc. (Chemistry))--North-West University, Potchefstroom Campus, 2012.North-West University2012-10-23T13:21:36Z2012-10-23T13:21:36Z2012Thesishttp://hdl.handle.net/10394/7612
collection NDLTD
sources NDLTD
topic Semiconductor
Photocatalysis
Photocatalytic
Reduction
Platinum
Langmuir-Hinshelwood
Kinetic
TiO2
Ethanol
spellingShingle Semiconductor
Photocatalysis
Photocatalytic
Reduction
Platinum
Langmuir-Hinshelwood
Kinetic
TiO2
Ethanol
Petzer, Adéle
Kinetics of the photocatalytic reduction of platinum (IV) in a batch and flow reactor / Adéle Petzer
description Semiconductor photocatalysis has received considerable attention in recent years as an alternative for treating water polluted with hazardous organic chemicals. The process, as a means of removal of persistent water contaminants such as pesticides, which exhibit chemical stability and resistance to biodegradation, has attracted the attention of many researchers. To a lesser extent, it has also been studied for decontamination of water containing toxic metals. Precious and common metals enter waters through washing, rinsing, pickling and surface treatment procedures of industrial processes, such as hydrometallurgy, plating and photography. As a result we are living in an environment with a multitude of potentially harmful toxic metal ions. In contrast, the demand for metals increases significantly with the development and growth of industry. Even though research on the photocatalytic recovery of waste and noble metals has escalated in the past 10 years, the practical implementation of these processes is not yet justified. The successful implementation of large scale reactors, for industrial application, has to consider several reactor design parameters that must be optimised, such as reactor geometry and the utilization of radiated energy. In this study the effect of various parameters such as initial platinum(IV)chloride concentrations, initial sacrificial reducing agent (ethanol) concentrations, catalyst (TiO2) concentration, pH, temperature and light intensity has been investigated as a first step towards optimising a photocatalytic batch and photocatalytic flow reactor. Langmuir–Hinshelwood kinetics has been applied to calculate the photocatalytic rate constant kr as well as the adsorption equilibrium constant Ke for both the initial platinum(IV) dependency as well as the initial ethanol concentration dependency. The results in this study may be used in future work for the optimisation and comparison of both batch and flow reactors towards the industrial implementation of these processes. === Thesis (M.Sc. (Chemistry))--North-West University, Potchefstroom Campus, 2012.
author Petzer, Adéle
author_facet Petzer, Adéle
author_sort Petzer, Adéle
title Kinetics of the photocatalytic reduction of platinum (IV) in a batch and flow reactor / Adéle Petzer
title_short Kinetics of the photocatalytic reduction of platinum (IV) in a batch and flow reactor / Adéle Petzer
title_full Kinetics of the photocatalytic reduction of platinum (IV) in a batch and flow reactor / Adéle Petzer
title_fullStr Kinetics of the photocatalytic reduction of platinum (IV) in a batch and flow reactor / Adéle Petzer
title_full_unstemmed Kinetics of the photocatalytic reduction of platinum (IV) in a batch and flow reactor / Adéle Petzer
title_sort kinetics of the photocatalytic reduction of platinum (iv) in a batch and flow reactor / adéle petzer
publisher North-West University
publishDate 2012
url http://hdl.handle.net/10394/7612
work_keys_str_mv AT petzeradele kineticsofthephotocatalyticreductionofplatinumivinabatchandflowreactoradelepetzer
_version_ 1716664240148840448