An investigation of the manufacturability of tungsten-copper for use in a compact recuperator / W. Koekemoer

A substantial raise in recuperator effectiveness has been established in the past by improving the fabricating and joining configurations regarding the manufacturing of compact recuperators. Further advancement of state-of-the-art recuperators requires providing for increased temperatures and pressu...

Full description

Bibliographic Details
Main Author: Koekemoer, Werner
Language:en
Published: North-West University 2011
Subjects:
Online Access:http://hdl.handle.net/10394/4213
id ndltd-netd.ac.za-oai-union.ndltd.org-nwu-oai-dspace.nwu.ac.za-10394-4213
record_format oai_dc
spelling ndltd-netd.ac.za-oai-union.ndltd.org-nwu-oai-dspace.nwu.ac.za-10394-42132014-04-16T03:53:06ZAn investigation of the manufacturability of tungsten-copper for use in a compact recuperator / W. KoekemoerKoekemoer, WernerCompact recuperatorTungsten-copperHigh temperature materialsRecuperator designElkonite®Printed circuit heat exchanger®A substantial raise in recuperator effectiveness has been established in the past by improving the fabricating and joining configurations regarding the manufacturing of compact recuperators. Further advancement of state-of-the-art recuperators requires providing for increased temperatures and pressures. 1bis can only be achieved by incorporating high temperature materials into the recuperator design. Although many high temperature materials have been identified in past research, less of these can be utilized in new concepts due to difficulties regarding fabricating and joining. However recently, in an independent study, a tungsten-copper alloy was identified through detailed material selection methods as a suitable material for high temperature applications. The validity of tungsten-copper regarding fabricating and joining, to establish a leak tight structure still needs to be demonstrated. The aim of the study is to carry out a comprehensive review of existing recuperator technologies and design methodologies as well as to investigate the manufacturability of tungsten-copper for use in a recuperator design of limited size. More specifically, the objectives entail the following: (1) The comprehensive review of existing recuperator technologies and recuperator design methodologies, (2) The design and fabrication of a recuperator of limited size using tungsten-copper as a heat transfer material and (3) The determination of the feasibility of fabrication of the design and the applicability of the selected W -eu alloy in the design. The fabrication technique that is presented in the design entailed the use of 2.Irm tungsten carbide drill bits to machine the correct recuperator profile, while the recuperator unit was joined by utilizing a mechanical fastening system. Although diffusion bonding was initially identified as the ideal joining technique for the recuperator of this research, restrictions and limitations relating to the use of diffusion bonding has lead to the identification of a fastening system as the technique used. Evaluation of the fabricated recuperator revealed that several factors were outside the initially specified values, inter alia the flatness tolerance of recuperator plate geometries and machined slots precision. These factors contributed to a leaJdng recuperator structure when tested. The most likely contributing factors for the latter relate to non-conforming tolerances achieved in the fabricated design, residual stresses induced by the machining process as well as design issues relating to the recuperator plate geometries. The design and fabrication of a recuperator of limited size using tungsten-copper as a heat transfer material, requires re-evaluation. Similar work will ensure a design of a high quality when provision is made for advanced surface fmishing of machined parts (notably the recuperator plate geometries), slight modifications to the design as well as stress relieving of machined components for the purpose of eliminating any residual stresses thatJnight be present.Thesis (M.Ing. (Mechanical Engineering))--North-West University, Potchefstroom Campus, 2009.North-West University2011-06-27T08:02:59Z2011-06-27T08:02:59Z2008Thesishttp://hdl.handle.net/10394/4213en
collection NDLTD
language en
sources NDLTD
topic Compact recuperator
Tungsten-copper
High temperature materials
Recuperator design
Elkonite®
Printed circuit heat exchanger®
spellingShingle Compact recuperator
Tungsten-copper
High temperature materials
Recuperator design
Elkonite®
Printed circuit heat exchanger®
Koekemoer, Werner
An investigation of the manufacturability of tungsten-copper for use in a compact recuperator / W. Koekemoer
description A substantial raise in recuperator effectiveness has been established in the past by improving the fabricating and joining configurations regarding the manufacturing of compact recuperators. Further advancement of state-of-the-art recuperators requires providing for increased temperatures and pressures. 1bis can only be achieved by incorporating high temperature materials into the recuperator design. Although many high temperature materials have been identified in past research, less of these can be utilized in new concepts due to difficulties regarding fabricating and joining. However recently, in an independent study, a tungsten-copper alloy was identified through detailed material selection methods as a suitable material for high temperature applications. The validity of tungsten-copper regarding fabricating and joining, to establish a leak tight structure still needs to be demonstrated. The aim of the study is to carry out a comprehensive review of existing recuperator technologies and design methodologies as well as to investigate the manufacturability of tungsten-copper for use in a recuperator design of limited size. More specifically, the objectives entail the following: (1) The comprehensive review of existing recuperator technologies and recuperator design methodologies, (2) The design and fabrication of a recuperator of limited size using tungsten-copper as a heat transfer material and (3) The determination of the feasibility of fabrication of the design and the applicability of the selected W -eu alloy in the design. The fabrication technique that is presented in the design entailed the use of 2.Irm tungsten carbide drill bits to machine the correct recuperator profile, while the recuperator unit was joined by utilizing a mechanical fastening system. Although diffusion bonding was initially identified as the ideal joining technique for the recuperator of this research, restrictions and limitations relating to the use of diffusion bonding has lead to the identification of a fastening system as the technique used. Evaluation of the fabricated recuperator revealed that several factors were outside the initially specified values, inter alia the flatness tolerance of recuperator plate geometries and machined slots precision. These factors contributed to a leaJdng recuperator structure when tested. The most likely contributing factors for the latter relate to non-conforming tolerances achieved in the fabricated design, residual stresses induced by the machining process as well as design issues relating to the recuperator plate geometries. The design and fabrication of a recuperator of limited size using tungsten-copper as a heat transfer material, requires re-evaluation. Similar work will ensure a design of a high quality when provision is made for advanced surface fmishing of machined parts (notably the recuperator plate geometries), slight modifications to the design as well as stress relieving of machined components for the purpose of eliminating any residual stresses thatJnight be present. === Thesis (M.Ing. (Mechanical Engineering))--North-West University, Potchefstroom Campus, 2009.
author Koekemoer, Werner
author_facet Koekemoer, Werner
author_sort Koekemoer, Werner
title An investigation of the manufacturability of tungsten-copper for use in a compact recuperator / W. Koekemoer
title_short An investigation of the manufacturability of tungsten-copper for use in a compact recuperator / W. Koekemoer
title_full An investigation of the manufacturability of tungsten-copper for use in a compact recuperator / W. Koekemoer
title_fullStr An investigation of the manufacturability of tungsten-copper for use in a compact recuperator / W. Koekemoer
title_full_unstemmed An investigation of the manufacturability of tungsten-copper for use in a compact recuperator / W. Koekemoer
title_sort investigation of the manufacturability of tungsten-copper for use in a compact recuperator / w. koekemoer
publisher North-West University
publishDate 2011
url http://hdl.handle.net/10394/4213
work_keys_str_mv AT koekemoerwerner aninvestigationofthemanufacturabilityoftungstencopperforuseinacompactrecuperatorwkoekemoer
AT koekemoerwerner investigationofthemanufacturabilityoftungstencopperforuseinacompactrecuperatorwkoekemoer
_version_ 1716663774322098176