Baseline assessment of the density and diversity of birds around Matimba and Medupi power station / Luckson Muyemeki

Bird populations are changing at unprecedented rates in response to human-induced changes to the global environment, and these rates of change are expected to accelerate over the coming decades. Changes in the levels of sulphur dioxide (SO2) in the atmosphere through emissions from power stations po...

Full description

Bibliographic Details
Main Author: Muyemeki, Luckson
Language:en
Published: 2016
Subjects:
Online Access:http://hdl.handle.net/10394/16083
Description
Summary:Bird populations are changing at unprecedented rates in response to human-induced changes to the global environment, and these rates of change are expected to accelerate over the coming decades. Changes in the levels of sulphur dioxide (SO2) in the atmosphere through emissions from power stations pose a potential threat to bird populations. However, avian response to SO2 pollution is poorly understood. Exploring the relationship between avian diversity and SO2 exposure levels will help in determining species sensitive to air pollution. This study seeks to understand the interactions between avian diversity and SO2 concentration levels around Matimba power station so as to have more insight on the level of avian vulnerability to air pollution. Matimba is an important site in South Africa as a second coal fired power station, Medupi, is currently being constructed with additional stations also a possibility. This study represents an important baseline assessment of the avian population status before the additional pollution burden is realised from Medupi. Ten min repeated point counts were conducted at three sample sites with varying distances from Matimba and Medupi power stations. These counts were used to calculate bird species density and diversity. Cloud-free Landsat 8 imagery acquired on 7 January, 2014 was used to derive habitat structure and productivity variables. Elevation variables were derived using a DEM (Digital Elevation Model) obtained from NASA Global Data Explorer. The AERMOD dispersion model was used to characterise spatio-temporal variations in ambient SO2 concentrations around Matimba power station. Multiple regression analysis was then used to ascertain which of these variables (SO2, habitat structure, productivity and terrain) contribute most to the observed variation in bird species density and diversity around Matimba and Medupi power stations. SO2 polluted air did not have an influence on bird species density and diversity at the community level. At species level two species (Batis molitor and Streptopelia senegalensis) exhibited some measure of negative response to SO2 air pollution. However, after further investigation using multiple regression analysis it was revealed that habitat structure had more influence on the density of these two species compared with ambient SO2 concentrations. Bird species density and diversity varied significantly among the sample sites but were not related to the distance to the source of the SO2 air pollution. Evidence obtained from this study revealed that continuous monitoring of the interactions between SO2 polluted air and bird populations is recommended for a more comprehensive understanding of avian susceptibility towards SO2 air pollution and this will also facilitate in the selection of sensitive and relevant species for future ecology studies at other coal-fired power stations. Furthermore, it is expected that SO2 concentrations will significantly increase with the commissioning of Medupi power station thus further necessitating the need for continuous monitoring of bird species densities around Matimba and Medupi power stations. === MSc (Geography and Environmental Management), North-West University, Potchefstroom Campus, 2015