Selected radiotracers as imaging tools for the investigation of nano-sized delivery systems / Vusani Mandiwana

Developing nanoparticulate delivery systems that will allow easy movement and localisation of a drug to the target tissue and provide more controlled release of the drug in vivo is a challenge for researchers in nanomedicine. The aim of this study was to evaluate the biodistribution of two nano-deli...

Full description

Bibliographic Details
Main Author: Mandiwana, Vusani
Language:en
Published: 2015
Subjects:
SLN
Online Access:http://hdl.handle.net/10394/13358
id ndltd-netd.ac.za-oai-union.ndltd.org-nwu-oai-dspace.nwu.ac.za-10394-13358
record_format oai_dc
collection NDLTD
language en
sources NDLTD
topic Imaging
Nanoparticles
PLGA
Radiotracers
Samarium oxide
SLN
99mTc-MDP
Beelding
Nanopartikels
Radiomerkers
Samarium oksied
spellingShingle Imaging
Nanoparticles
PLGA
Radiotracers
Samarium oxide
SLN
99mTc-MDP
Beelding
Nanopartikels
Radiomerkers
Samarium oksied
Mandiwana, Vusani
Selected radiotracers as imaging tools for the investigation of nano-sized delivery systems / Vusani Mandiwana
description Developing nanoparticulate delivery systems that will allow easy movement and localisation of a drug to the target tissue and provide more controlled release of the drug in vivo is a challenge for researchers in nanomedicine. The aim of this study was to evaluate the biodistribution of two nano-delivery systems namely, poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles containing samarium-153 oxide ([153Sm]Sm2O3) as radiotracer and solid lipid nanoparticles (SLNs) containing technetium-99m-methylene diphosphonate (99mTc-MDP), after oral and intravenous administration to rats to prove that orally administered nanoparticles indeed alter the biodistribution of a drug as compared to the drug on its own. Stable samarium-152 oxide ([152Sm]Sm2O3) was encapsulated in polymeric PLGA nanoparticles. These were then activated in a nuclear reactor to produce radioactive [153Sm]Sm2O3 loaded-PLGA nanoparticles. Both the stable nanoparticles as well as the fully decayed activated nanoparticles, were characterized for size, Zeta potential and morphology using dynamic light scattering and scanning electron microscopy (SEM) or transmission electron microscopy (TEM), respectively. SLNs were a form of delivery system which was used to encapsulate the radiotracer, 99mTc-MDP. 99mTc-MDP SLNs were characterized before and after encapsulation for size and Zeta potential. Both nanoparticle compounds were orally and intravenously (IV) administered to rats in order to trace their uptake and biodistribution through imaging and ex vivo biodistribution studies. The PLGA nanoparticles containing [153Sm]Sm2O3 were spherical in morphology and smaller than 500 nm, therefore meeting the objective of producing radiolabelled nanoparticles smaller than 500 nm. Various parameters were optimized to obtain an average particle size ranging between 250 and 300 nm, with an average polydispersity index (PDI) ≤ 0.3 after spray drying. The particles had a Zeta potential ranging between 5 and 20 mV. The Sm2O3-PLGA nanoparticles had an average size of 281 ± 6.3 nm and a PDI average of 0.22. The orally administered [153Sm]Sm2O3-PLGA nanoparticles were deposited in various organs which includes bone with a total of 0.3% of the Injected Dose (ID) per gram vs the control of [153Sm]Sm2O3which showed no uptake in any organs except the GI-tract. The IV injected [153Sm]Sm2O3-PLGA nanoparticles exhibit the highest localisation of nanoparticles in the spleen (8.63%ID/g) and liver (3.07%ID/g). The 99mTc-MDP-labelled SLN were spherical and smaller than 500 nm. Optimization of the MDP-loaded SLN emulsions yielded a slightly higher PDI of ≥0.5 and a size range between 150 and 450 nm. The Zeta potential was between -30 and -2 mV. The MDP-loaded SLN had an average size of 256 ± 5.27 and an average PDI of 0.245.The orally administered 99mTc-MDP SLN had the highest localisation of nanoparticles in the kidneys (8.50%ID/g) and stomach (8.04%ID/g) while the control, 99mTc-MDP had no uptake in any organs except the GI-tract. The IV injected 99mTc-MDP SLN also exhibited a high localisation of particles in the kidneys (3.87%ID/g) followed by bone (2.66%ID/g). Both the IV and oral 99mTc-MDP SLN reported significantly low deposition values in the heart, liver and spleen. Based on the imaging and the biodistribution studies, it can be concluded that there was a significant transfer of the orally administrated radiolabelled nanoparticles from the stomach to other organs vs the controls. Furthermore, this biodistribution of the nano carriers warrants surface modification and optimisation of the nanoparticles to avoid higher particle localisation in the stomach. === MSc (Pharmaceutics), North-West University, Potchefstroom Campus, 2014
author Mandiwana, Vusani
author_facet Mandiwana, Vusani
author_sort Mandiwana, Vusani
title Selected radiotracers as imaging tools for the investigation of nano-sized delivery systems / Vusani Mandiwana
title_short Selected radiotracers as imaging tools for the investigation of nano-sized delivery systems / Vusani Mandiwana
title_full Selected radiotracers as imaging tools for the investigation of nano-sized delivery systems / Vusani Mandiwana
title_fullStr Selected radiotracers as imaging tools for the investigation of nano-sized delivery systems / Vusani Mandiwana
title_full_unstemmed Selected radiotracers as imaging tools for the investigation of nano-sized delivery systems / Vusani Mandiwana
title_sort selected radiotracers as imaging tools for the investigation of nano-sized delivery systems / vusani mandiwana
publishDate 2015
url http://hdl.handle.net/10394/13358
work_keys_str_mv AT mandiwanavusani selectedradiotracersasimagingtoolsfortheinvestigationofnanosizeddeliverysystemsvusanimandiwana
_version_ 1718204867435036672
spelling ndltd-netd.ac.za-oai-union.ndltd.org-nwu-oai-dspace.nwu.ac.za-10394-133582016-03-16T03:59:12ZSelected radiotracers as imaging tools for the investigation of nano-sized delivery systems / Vusani MandiwanaMandiwana, VusaniImagingNanoparticlesPLGARadiotracersSamarium oxideSLN99mTc-MDPBeeldingNanopartikelsRadiomerkersSamarium oksiedDeveloping nanoparticulate delivery systems that will allow easy movement and localisation of a drug to the target tissue and provide more controlled release of the drug in vivo is a challenge for researchers in nanomedicine. The aim of this study was to evaluate the biodistribution of two nano-delivery systems namely, poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles containing samarium-153 oxide ([153Sm]Sm2O3) as radiotracer and solid lipid nanoparticles (SLNs) containing technetium-99m-methylene diphosphonate (99mTc-MDP), after oral and intravenous administration to rats to prove that orally administered nanoparticles indeed alter the biodistribution of a drug as compared to the drug on its own. Stable samarium-152 oxide ([152Sm]Sm2O3) was encapsulated in polymeric PLGA nanoparticles. These were then activated in a nuclear reactor to produce radioactive [153Sm]Sm2O3 loaded-PLGA nanoparticles. Both the stable nanoparticles as well as the fully decayed activated nanoparticles, were characterized for size, Zeta potential and morphology using dynamic light scattering and scanning electron microscopy (SEM) or transmission electron microscopy (TEM), respectively. SLNs were a form of delivery system which was used to encapsulate the radiotracer, 99mTc-MDP. 99mTc-MDP SLNs were characterized before and after encapsulation for size and Zeta potential. Both nanoparticle compounds were orally and intravenously (IV) administered to rats in order to trace their uptake and biodistribution through imaging and ex vivo biodistribution studies. The PLGA nanoparticles containing [153Sm]Sm2O3 were spherical in morphology and smaller than 500 nm, therefore meeting the objective of producing radiolabelled nanoparticles smaller than 500 nm. Various parameters were optimized to obtain an average particle size ranging between 250 and 300 nm, with an average polydispersity index (PDI) ≤ 0.3 after spray drying. The particles had a Zeta potential ranging between 5 and 20 mV. The Sm2O3-PLGA nanoparticles had an average size of 281 ± 6.3 nm and a PDI average of 0.22. The orally administered [153Sm]Sm2O3-PLGA nanoparticles were deposited in various organs which includes bone with a total of 0.3% of the Injected Dose (ID) per gram vs the control of [153Sm]Sm2O3which showed no uptake in any organs except the GI-tract. The IV injected [153Sm]Sm2O3-PLGA nanoparticles exhibit the highest localisation of nanoparticles in the spleen (8.63%ID/g) and liver (3.07%ID/g). The 99mTc-MDP-labelled SLN were spherical and smaller than 500 nm. Optimization of the MDP-loaded SLN emulsions yielded a slightly higher PDI of ≥0.5 and a size range between 150 and 450 nm. The Zeta potential was between -30 and -2 mV. The MDP-loaded SLN had an average size of 256 ± 5.27 and an average PDI of 0.245.The orally administered 99mTc-MDP SLN had the highest localisation of nanoparticles in the kidneys (8.50%ID/g) and stomach (8.04%ID/g) while the control, 99mTc-MDP had no uptake in any organs except the GI-tract. The IV injected 99mTc-MDP SLN also exhibited a high localisation of particles in the kidneys (3.87%ID/g) followed by bone (2.66%ID/g). Both the IV and oral 99mTc-MDP SLN reported significantly low deposition values in the heart, liver and spleen. Based on the imaging and the biodistribution studies, it can be concluded that there was a significant transfer of the orally administrated radiolabelled nanoparticles from the stomach to other organs vs the controls. Furthermore, this biodistribution of the nano carriers warrants surface modification and optimisation of the nanoparticles to avoid higher particle localisation in the stomach.MSc (Pharmaceutics), North-West University, Potchefstroom Campus, 20142015-02-16T07:07:59Z2015-02-16T07:07:59Z2014Thesishttp://hdl.handle.net/10394/13358en