Willingness to pay for water quality changes in the Swartkops Estuary

South Africa, like the rest of the world, is vulnerable to the impact of climate change and loss of biodiversity. Water pollution is one of the six global threats to freshwater biodiversity. The future health status and productivity of South Africa’s estuaries is dependent on two main factors: manag...

Full description

Bibliographic Details
Main Author: Magobiane, Siyathemba Emmanuel
Format: Others
Language:English
Published: Nelson Mandela Metropolitan University 2011
Subjects:
Online Access:http://hdl.handle.net/10948/d1011505
Description
Summary:South Africa, like the rest of the world, is vulnerable to the impact of climate change and loss of biodiversity. Water pollution is one of the six global threats to freshwater biodiversity. The future health status and productivity of South Africa’s estuaries is dependent on two main factors: management and quality and quantity of freshwater inputs. South Africa has around 250 functioning estuaries along its 3000 km coastline (Hosking 2004). They play an invaluable role in ecosystem functioning and biodiversity conservation. Estuaries are amongst the richest and most productive parts of the marine environment and as such call for careful management. Some of these ecosystems are focus areas for urban an industrial development. Urbanization and industrialization pose a serious threat to these sensitive systems. Increased water pollution from domestic use, industry and agriculture affect the ecology of these estuarine, river and lake systems. A large number of South African estuaries are still in excellent or good condition, but these are mainly the very small systems. The larger systems, like the Swartkops estuary, often very important in terms of conservation value, are also often compromised in some way or other. The reasons why they are compromised include habitat destruction, artificial breaching and pollution, especially those close to urban areas. This situation is aggravated by outdated and inadequate sewage treatment plant infrastructure and unskilled operators that dispose untreated waste into these systems. Pollution into estuaries can result in the partial loss of the environmental service flows supplied by them. The result of lost environmental service flows has adverse consequences, such as diminished residential and holiday recreational appeal, as well as reduced capacity to support subsistence livelihoods. Poor water quality not only limits its utilisation value, but is also places added economic burden on society, through both the primary treatment costs and the secondary impacts on the economy. Healthy estuarine ecosystems are essential for the maintenance of biodiversity and a wide range of environmental goods and services. Without a drastic improvement in water quality management approaches and treatment technologies, the continuous deterioration in water quality will decrease benefits and increase costs affiliated with use of these water resources.The market-based system of the South African economy has to a large extent failed to account for the value of the “free” goods and services provided by the natural environment. When the true value of the natural resources is unknown, there is a risk that less financial resources and capacity are made available to manage and protect these natural resources than is efficient. To ensure that these goods are properly taken into account, they must be valued and these values incorporated in social decision making. This study uses the contingent valuation method (CVM) to establish the value of the Swartkops estuary for changes to water quality. The CVM is a non-market valuation method that is widely used in cost-benefit analysis and environmental impact assessment. The CVM establishes the economic value of the good by asking the users of an environmental good to state their willingness to pay for a hypothetical scenario to prevent, or bring about, certain changes in the current condition of the environmental good. This method is subjected to some criticism. This criticism revolves around the validity and the reliability of estimated results and the effects of various biases and errors on them. The North Oceanic and Atmospheric Administration (NOAA) Blue-Ribbon panel investigating the validity of the CVM resolved that the CVM can be used to guide social decision making, if a series of guidelines are followed. The Swartkops contingent valuation (CV) was conducted with these guidelines in mind. The results of the Swartkops CV indicate that the user population has a total willingness to pay (TWTP) of R68848 (median bid) and R203632 (mean bid) annually for the implementation of a project to improve the water quality in the Swartkops estuary. User population is an important determinant of the TWTP value. As a result, using a more broadly defined user population, TWTP per annum was calculated to be R3481987 (median bid) and R10298688 (mean bid). Management of natural resources should be informed by values that reflect efficient balances, so as to obtain the most efficient use of them (Trupie 2008). Polluted water inflows into South Africa’s estuaries are a threat to their biodiversity. Healthy estuarine ecosystems are essential for the maintenance of biodiversity and human well-being (Water Assessment Programme Report 2006: 15). As a result, this study recommends that a project be implemented by the Nelson Mandela Bay Municipality to improve water quality in the Swartkops estuary.