Interpretable machine learning approaches to high-dimensional data and their applications to biomedical engineering problems
京都大学 === 0048 === 新制・課程博士 === 博士(情報学) === 甲第21215号 === 情博第668号 === 新制||情||115(附属図書館) === 京都大学大学院情報学研究科システム科学専攻 === (主査)教授 石井 信, 教授 下平 英寿, 教授 加納 学, 銅谷 賢治 === 学位規則第4条第1項該当 === Doctor of Informatics === Kyoto University === DFAM...
Main Author: | Yoshida, Kosuke |
---|---|
Other Authors: | 石井, 信 |
Format: | Doctoral Thesis |
Language: | English |
Published: |
Kyoto University
2018
|
Subjects: | |
Online Access: | http://hdl.handle.net/2433/232416 |
Similar Items
-
Machine Learning Methods for High-Dimensional Imbalanced Biomedical Data
Published: (2013) -
Enhancing Multi-Center Generalization of Machine Learning-Based Depression Diagnosis From Resting-State fMRI
by: Takashi Nakano, et al.
Published: (2020-05-01) -
Kernel Machine Methods for Risk Prediction with High Dimensional Data
by: Sinnott, Jennifer Anne
Published: (2012) -
Towards quantifying psychiatric diagnosis using machine learning algorithms and big fMRI data
by: Fahad Saeed
Published: (2018-05-01) -
Neural Representation of Anticipation Involved in Decision Making
by: Shikauchi, Yumi
Published: (2017)