Non-methane volatile organic compounds in Africa: a vew from space
Isoprene emissions affect human health, air quality, and the oxidative capacity of the atmosphere. Globally anthropogenic non-methane volatile organic compounds (NMVOC) emissions are lower than that of isoprene, but local hotspots are hazardous to human health and air quality. In Africa the tropics...
Main Author: | |
---|---|
Other Authors: | |
Language: | en_US |
Published: |
Harvard University
2014
|
Subjects: | |
Online Access: | http://dissertations.umi.com/gsas.harvard:11313 http://nrs.harvard.edu/urn-3:HUL.InstRepos:12274545 |
Summary: | Isoprene emissions affect human health, air quality, and the oxidative capacity of the atmosphere. Globally anthropogenic non-methane volatile organic compounds (NMVOC) emissions are lower than that of isoprene, but local hotspots are hazardous to human health and air quality. In Africa the tropics are a large source of isoprene, while Nigeria appears as a large contributor to regional anthropogenic NMVOC emissions. I make extensive use of space-based formaldehyde (HCHO) observations from the Ozone Monitoring Instrument (OMI) and the chemical transport model (CTM) GEOS-Chem to estimate and examine seasonality of isoprene emissions across Africa, and identify sources and air quality consequences of anthropogenic NMVOC emissions in Nigeria. === Earth and Planetary Sciences |
---|