Elucidation of immune cell function via nanotechnology and single-cell profiling.
A healthy immune system's core challenge is to mount appropriate responses to an immense and unknown variety of antigenic stimuli. By unraveling the regulatory networks that drive and control immune-cell behaviors, we can begin to identify the means by which proper balance can be achieved and a...
Main Author: | |
---|---|
Other Authors: | |
Language: | en_US |
Published: |
Harvard University
2014
|
Subjects: | |
Online Access: | http://dissertations.umi.com/gsas.harvard:11508 http://nrs.harvard.edu/urn-3:HUL.InstRepos:12274465 |
Summary: | A healthy immune system's core challenge is to mount appropriate responses to an immense and unknown variety of antigenic stimuli. By unraveling the regulatory networks that drive and control immune-cell behaviors, we can begin to identify the means by which proper balance can be achieved and aberrant behaviors clinically corrected. Traditionally, major advances in our understanding of cellular immunological processes depended critically on both improved perturbation and enhanced observation methods. In my doctoral research, I have pursued both strategies to elucidate the differentiation and effector functions of adaptive immune Th17 cells. These cells exemplify the need for balance: while Th17 cells are needed to induce clearance of fungal infections and extracellular bacteria, irregular responses have been strongly implicated in autoimmunity. === Chemistry and Chemical Biology |
---|