The Influence of Surface Friction and Other Parameters on Concrete's Response to Loading

This thesis presents an evaluation of concrete behavior under loading. Currently, concrete theories and codes are inadequate in explaining the full gamut of concrete responses due to loading. It is, therefore, of great interest to formulate a theory that is capable of explaining the wide array of co...

Full description

Bibliographic Details
Other Authors: Bouchard, Nicholas (authoraut)
Format: Others
Language:English
English
Published: Florida State University
Subjects:
Online Access:http://purl.flvc.org/fsu/fd/FSU_migr_etd-7102
id ndltd-fsu.edu-oai-fsu.digital.flvc.org-fsu_183610
record_format oai_dc
spelling ndltd-fsu.edu-oai-fsu.digital.flvc.org-fsu_1836102020-06-16T03:08:29Z The Influence of Surface Friction and Other Parameters on Concrete's Response to Loading Bouchard, Nicholas (authoraut) Rambo-Roddenberry, Michelle (professor directing thesis) Ping, Virgil (committee member) Tawfiq, Kamal (committee member) Department of Civil and Environmental Engineering (degree granting department) Florida State University (degree granting institution) Text text Florida State University Florida State University English eng 1 online resource computer application/pdf This thesis presents an evaluation of concrete behavior under loading. Currently, concrete theories and codes are inadequate in explaining the full gamut of concrete responses due to loading. It is, therefore, of great interest to formulate a theory that is capable of explaining the wide array of concrete responses in order to better understand concrete behavior and to build safer, stronger, and more cost effective structures. The purpose of this thesis is to aid in formulating a concrete failure theory that will account for variations in concrete behavior under loading. In order to achieve this, an extensive investigation of past concrete research is performed. Important concrete phenomena such as microcracking, Poisson's effect, size effect, response to confinement, and the response to loading rate are discussed. The procedure and test results of a concrete compression test with reduced surface friction are also presented. In this thesis, evidence is presented to dispute the existence and the influence of both size effect and the concrete response to the rate of loading. It is also proven that axial cleavage fracture is the true failure mode of concrete under uniaxial compression, not shear failure. The crack pattern of a cylindrical concrete specimen that reaches failure under uniaxial compression consists of a series of rather straight cracks running the entire length of the specimen parallel to the direction of the applied compressive load. This is a stark contrast to the typically expected cracks inclined toward the center of the specimen accompanied by uncracked ends. A case is also made that concrete failure in compression is due to lateral tensile strains caused by the existence of Poisson's effect. An investigation of strain is also performed. This investigation and the discussion of the topics previously listed lead to the development of a proposed strain failure theory. A series of proposed testing procedures is also presented. A Thesis submitted to the Department of Civil and Environmental Engineering in partial fulfillment of the requirements for the degree of Master of Science. Spring Semester, 2010. March 31, 2010. Includes bibliographical references. Michelle Rambo-Roddenberry, Professor Directing Thesis; Virgil Ping, Committee Member; Kamal Tawfiq, Committee Member. Civil engineering Environmental engineering FSU_migr_etd-7102 http://purl.flvc.org/fsu/fd/FSU_migr_etd-7102 This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s). The copyright in theses and dissertations completed at Florida State University is held by the students who author them. http://diginole.lib.fsu.edu/islandora/object/fsu%3A183610/datastream/TN/view/Influence%20of%20Surface%20Friction%20and%20Other%20Parameters%20on%20Concrete%27s%20Response%20to%20Loading.jpg
collection NDLTD
language English
English
format Others
sources NDLTD
topic Civil engineering
Environmental engineering
spellingShingle Civil engineering
Environmental engineering
The Influence of Surface Friction and Other Parameters on Concrete's Response to Loading
description This thesis presents an evaluation of concrete behavior under loading. Currently, concrete theories and codes are inadequate in explaining the full gamut of concrete responses due to loading. It is, therefore, of great interest to formulate a theory that is capable of explaining the wide array of concrete responses in order to better understand concrete behavior and to build safer, stronger, and more cost effective structures. The purpose of this thesis is to aid in formulating a concrete failure theory that will account for variations in concrete behavior under loading. In order to achieve this, an extensive investigation of past concrete research is performed. Important concrete phenomena such as microcracking, Poisson's effect, size effect, response to confinement, and the response to loading rate are discussed. The procedure and test results of a concrete compression test with reduced surface friction are also presented. In this thesis, evidence is presented to dispute the existence and the influence of both size effect and the concrete response to the rate of loading. It is also proven that axial cleavage fracture is the true failure mode of concrete under uniaxial compression, not shear failure. The crack pattern of a cylindrical concrete specimen that reaches failure under uniaxial compression consists of a series of rather straight cracks running the entire length of the specimen parallel to the direction of the applied compressive load. This is a stark contrast to the typically expected cracks inclined toward the center of the specimen accompanied by uncracked ends. A case is also made that concrete failure in compression is due to lateral tensile strains caused by the existence of Poisson's effect. An investigation of strain is also performed. This investigation and the discussion of the topics previously listed lead to the development of a proposed strain failure theory. A series of proposed testing procedures is also presented. === A Thesis submitted to the Department of Civil and Environmental Engineering in partial fulfillment of the requirements for the degree of Master of Science. === Spring Semester, 2010. === March 31, 2010. === Includes bibliographical references. === Michelle Rambo-Roddenberry, Professor Directing Thesis; Virgil Ping, Committee Member; Kamal Tawfiq, Committee Member.
author2 Bouchard, Nicholas (authoraut)
author_facet Bouchard, Nicholas (authoraut)
title The Influence of Surface Friction and Other Parameters on Concrete's Response to Loading
title_short The Influence of Surface Friction and Other Parameters on Concrete's Response to Loading
title_full The Influence of Surface Friction and Other Parameters on Concrete's Response to Loading
title_fullStr The Influence of Surface Friction and Other Parameters on Concrete's Response to Loading
title_full_unstemmed The Influence of Surface Friction and Other Parameters on Concrete's Response to Loading
title_sort influence of surface friction and other parameters on concrete's response to loading
publisher Florida State University
url http://purl.flvc.org/fsu/fd/FSU_migr_etd-7102
_version_ 1719320011107991552