The Influence of Oceanographic Processes on Recruitment and Gene Flow in the Temperate Rockfish Sebastes Melanops

Many marine species are typified by a pelagic stage during which tiny larvae develop in the open ocean, where they are subject to high mortality and transport via ocean currents. For organisms with this life history, the study of their population dynamics is challenging because individuals are not d...

Full description

Bibliographic Details
Other Authors: Lotterhos, Katie E. (authoraut)
Format: Others
Language:English
English
Published: Florida State University
Subjects:
Online Access:http://purl.flvc.org/fsu/fd/FSU_migr_etd-5002
id ndltd-fsu.edu-oai-fsu.digital.flvc.org-fsu_182985
record_format oai_dc
collection NDLTD
language English
English
format Others
sources NDLTD
topic Biology
Life sciences
spellingShingle Biology
Life sciences
The Influence of Oceanographic Processes on Recruitment and Gene Flow in the Temperate Rockfish Sebastes Melanops
description Many marine species are typified by a pelagic stage during which tiny larvae develop in the open ocean, where they are subject to high mortality and transport via ocean currents. For organisms with this life history, the study of their population dynamics is challenging because individuals are not directly traceable. Challenges to the study of population dynamics include the determination of source and sink populations, of connectivity among populations, of the mechanisms that drive the abundance and relatedness of recruits, and of how life-history characteristics mitigate or exacerbate the uncertainty of the ocean environment. My dissertation addressed these challenges in the Pacific black rockfish, Sebastes melanops, using a combination of standardized field sampling, population genetics, and mathematical modeling. Like other members of the rockfish genus, black rockfish are long-lived fishes that suffered severe declines in the 1980's due to overfishing. I collected adults from Oregon to British Columbia, and genotyped them at 8 microsatellite markers. I used isolation by distance theory to estimate the width of the dispersal kernel, as well as compared coalescent-migration matrices with Bayes factors. My results illustrated that over several generations, gene flow in the population occurred from south-to-north (a bearing in agreement with the direction of currents during the pelagic phase) and the mean dispersal distance (< 50 km) was smaller than might be expected based on an extensive pelagic phase of 60--80 days. This analysis was extended to examine the source populations for rockfish recruits that were collected between 2005 and 2009 from Barkley Sound (British Columbia), and my results suggested that substantial local recruitment occurred during downwelling regimes that favored the retention of larvae. However, the number of source populations for larvae was not correlated with the genetic diversity of recruits. I used cross-correlations to examine the relationships between oceanographic conditions, the abundance of recruits, and the genetic diversity of those recruits. I found that although there was a strong positive relationship between upwelling and the abundance of recruits, the effective number of breeders that contributed to each cohort was positively correlated with temperature. Finally, I utilized computer simulations to examine the conflicting predictions for multiple paternity for the effective size of a population (Ne). For long-lived species like rockfish, there were small differences in Ne between populations with multiple paternity and a monandrous mating systems, indicating that multiple paternity had little effect on the genetic patterns observed in this study. The results of my research can be applied to the conservation and management of this species across the US-Canada border, and may be useful in predicting how this species will respond to climate change. === A Dissertation submitted to the Department of Biology in partial fulfillment of the requirements for the degree of Doctor of Philosophy. === Fall Semester, 2011. === October 14, 2011. === Connectivity, Dispersal, Larval Growth, Multiple Paternity, Pacific Rockfish, Sweepstakes === Includes bibliographical references. === Don Levitan, Professor Directing Dissertation; Jeffery Chanton, University Representative; Alice Winn, Committee Member; Peter Beerli, Committee Member; Brian Inouye, Committee Member.
author2 Lotterhos, Katie E. (authoraut)
author_facet Lotterhos, Katie E. (authoraut)
title The Influence of Oceanographic Processes on Recruitment and Gene Flow in the Temperate Rockfish Sebastes Melanops
title_short The Influence of Oceanographic Processes on Recruitment and Gene Flow in the Temperate Rockfish Sebastes Melanops
title_full The Influence of Oceanographic Processes on Recruitment and Gene Flow in the Temperate Rockfish Sebastes Melanops
title_fullStr The Influence of Oceanographic Processes on Recruitment and Gene Flow in the Temperate Rockfish Sebastes Melanops
title_full_unstemmed The Influence of Oceanographic Processes on Recruitment and Gene Flow in the Temperate Rockfish Sebastes Melanops
title_sort influence of oceanographic processes on recruitment and gene flow in the temperate rockfish sebastes melanops
publisher Florida State University
url http://purl.flvc.org/fsu/fd/FSU_migr_etd-5002
_version_ 1719319507809337344
spelling ndltd-fsu.edu-oai-fsu.digital.flvc.org-fsu_1829852020-06-13T03:09:07Z The Influence of Oceanographic Processes on Recruitment and Gene Flow in the Temperate Rockfish Sebastes Melanops Lotterhos, Katie E. (authoraut) Levitan, Don (professor directing dissertation) Chanton, Jeffery (university representative) Winn, Alice (committee member) Beerli, Peter (committee member) Inouye, Brian (committee member) Department of Biological Science (degree granting department) Florida State University (degree granting institution) Text text Florida State University Florida State University English eng 1 online resource computer application/pdf Many marine species are typified by a pelagic stage during which tiny larvae develop in the open ocean, where they are subject to high mortality and transport via ocean currents. For organisms with this life history, the study of their population dynamics is challenging because individuals are not directly traceable. Challenges to the study of population dynamics include the determination of source and sink populations, of connectivity among populations, of the mechanisms that drive the abundance and relatedness of recruits, and of how life-history characteristics mitigate or exacerbate the uncertainty of the ocean environment. My dissertation addressed these challenges in the Pacific black rockfish, Sebastes melanops, using a combination of standardized field sampling, population genetics, and mathematical modeling. Like other members of the rockfish genus, black rockfish are long-lived fishes that suffered severe declines in the 1980's due to overfishing. I collected adults from Oregon to British Columbia, and genotyped them at 8 microsatellite markers. I used isolation by distance theory to estimate the width of the dispersal kernel, as well as compared coalescent-migration matrices with Bayes factors. My results illustrated that over several generations, gene flow in the population occurred from south-to-north (a bearing in agreement with the direction of currents during the pelagic phase) and the mean dispersal distance (< 50 km) was smaller than might be expected based on an extensive pelagic phase of 60--80 days. This analysis was extended to examine the source populations for rockfish recruits that were collected between 2005 and 2009 from Barkley Sound (British Columbia), and my results suggested that substantial local recruitment occurred during downwelling regimes that favored the retention of larvae. However, the number of source populations for larvae was not correlated with the genetic diversity of recruits. I used cross-correlations to examine the relationships between oceanographic conditions, the abundance of recruits, and the genetic diversity of those recruits. I found that although there was a strong positive relationship between upwelling and the abundance of recruits, the effective number of breeders that contributed to each cohort was positively correlated with temperature. Finally, I utilized computer simulations to examine the conflicting predictions for multiple paternity for the effective size of a population (Ne). For long-lived species like rockfish, there were small differences in Ne between populations with multiple paternity and a monandrous mating systems, indicating that multiple paternity had little effect on the genetic patterns observed in this study. The results of my research can be applied to the conservation and management of this species across the US-Canada border, and may be useful in predicting how this species will respond to climate change. A Dissertation submitted to the Department of Biology in partial fulfillment of the requirements for the degree of Doctor of Philosophy. Fall Semester, 2011. October 14, 2011. Connectivity, Dispersal, Larval Growth, Multiple Paternity, Pacific Rockfish, Sweepstakes Includes bibliographical references. Don Levitan, Professor Directing Dissertation; Jeffery Chanton, University Representative; Alice Winn, Committee Member; Peter Beerli, Committee Member; Brian Inouye, Committee Member. Biology Life sciences FSU_migr_etd-5002 http://purl.flvc.org/fsu/fd/FSU_migr_etd-5002 This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s). The copyright in theses and dissertations completed at Florida State University is held by the students who author them. http://diginole.lib.fsu.edu/islandora/object/fsu%3A182985/datastream/TN/view/Influence%20of%20Oceanographic%20Processes%20on%20Recruitment%20and%20Gene%20Flow%20in%20the%20Temperate%20Rockfish%20Sebastes%20Melanops.jpg