Deploying a CMS Tier-3 Computing Cluster with Grid-enabled Computing Infrastructure
The Large Hadron Collider (LHC), whose experiments include the Compact Muon Solenoid (CMS), produces over 30 million gigabytes of data annually, and implements a distributed computing architecture—a tiered hierarchy, from Tier-0 through Tier-3—in order to process and store all of this data. Out of a...
Main Author: | |
---|---|
Format: | Others |
Published: |
FIU Digital Commons
2016
|
Subjects: | |
Online Access: | http://digitalcommons.fiu.edu/etd/2564 http://digitalcommons.fiu.edu/cgi/viewcontent.cgi?article=3791&context=etd |
Summary: | The Large Hadron Collider (LHC), whose experiments include the Compact Muon Solenoid (CMS), produces over 30 million gigabytes of data annually, and implements a distributed computing architecture—a tiered hierarchy, from Tier-0 through Tier-3—in order to process and store all of this data. Out of all of the computing tiers, Tier-3 clusters allow scientists the most freedom and flexibility to perform their analyses of LHC data. Tier-3 clusters also provide local services such as login and storage services, provide a means to locally host and analyze LHC data, and allow both remote and local users to submit grid-based jobs. Using the Rocks cluster distribution software version 6.1.1, along with the Open Science Grid (OSG) roll version 3.2.35, a grid-enabled CMS Tier-3 computing cluster was deployed at Florida International University’s Modesto A. Maidique campus. Validation metric results from Ganglia, MyOSG, and CMS Dashboard verified a successful deployment. |
---|