Aerodynamic Load Characteristics Evaluation and Tri-Axial Performance Testing on Fiber Reinforced Polymer Connections and Metal Fasteners to Promote Hurricane Damage Mitigation

Damages during extreme wind events highlight the weaknesses of mechanical fasteners at the roof-to-wall connections in residential timber frame buildings. The allowable capacity of the metal fasteners is based on results of unidirectional component testing that do not simulate realistic tri-axial ae...

Full description

Bibliographic Details
Main Author: Canino-Vazquez, Iván R.
Format: Others
Published: FIU Digital Commons 2009
Subjects:
Online Access:http://digitalcommons.fiu.edu/etd/128
http://digitalcommons.fiu.edu/cgi/viewcontent.cgi?article=1148&context=etd
id ndltd-fiu.edu-oai-digitalcommons.fiu.edu-etd-1148
record_format oai_dc
spelling ndltd-fiu.edu-oai-digitalcommons.fiu.edu-etd-11482018-01-05T15:32:35Z Aerodynamic Load Characteristics Evaluation and Tri-Axial Performance Testing on Fiber Reinforced Polymer Connections and Metal Fasteners to Promote Hurricane Damage Mitigation Canino-Vazquez, Iván R. Damages during extreme wind events highlight the weaknesses of mechanical fasteners at the roof-to-wall connections in residential timber frame buildings. The allowable capacity of the metal fasteners is based on results of unidirectional component testing that do not simulate realistic tri-axial aerodynamic loading effects. The first objective of this research was to simulate hurricane effects and study hurricane-structure interaction at full-scale, facilitating better understanding of the combined impacts of wind, rain, and debris on inter-component connections at spatial and temporal scales. The second objective was to evaluate the performance of a non-intrusive roof-to-wall connection system using fiber reinforced polymer (FRP) materials and compare its load capacity to the capacity of an existing metal fastener under simulated aerodynamic loads. The Wall of Wind (WoW) testing performed using FRP connections on a one-story gable-roof timber structure instrumented with a variety of sensors, was used to create a database on aerodynamic and aero-hydrodynamic loading on roof-to-wall connections tested under several parameters: angles of attack, wind-turbulence content, internal pressure conditions, with and without effects of rain. Based on the aerodynamic loading results obtained from WoW tests, sets of three force components (tri-axial mean loads) were combined into a series of resultant mean forces, which were used to test the FRP and metal connections in the structures laboratory up to failure. A new component testing system and test protocol were developed for testing fasteners under simulated tri-axial loading as opposed to uni-axial loading. The tri-axial and uni-axial test results were compared for hurricane clips. Also, comparison was made between tri-axial load capacity of FRP and metal connections. The research findings demonstrate that the FRP connection is a viable option for use in timber roof-to-wall connection system. Findings also confirm that current testing methods of mechanical fasteners tend to overestimate the actual load capacities of a connector. Additionally, the research also contributes to the development a new testing protocol for fasteners using tri-axial simultaneous loads based on the aerodynamic database obtained from the WoW testing. 2009-11-13T08:00:00Z text application/pdf http://digitalcommons.fiu.edu/etd/128 http://digitalcommons.fiu.edu/cgi/viewcontent.cgi?article=1148&context=etd FIU Electronic Theses and Dissertations FIU Digital Commons Roof-to-Wall Connections Timber Connections Fiber Reinforced Polymers Tri-Axial Performance Testing Aerodynamic Load Characteristics Evaluation Hurricane Simulation Hurricane Clips Hurricane Damage Mitigation Tropical Cyclone Simulation Continuous Load Path
collection NDLTD
format Others
sources NDLTD
topic Roof-to-Wall Connections
Timber Connections
Fiber Reinforced Polymers
Tri-Axial Performance Testing
Aerodynamic Load Characteristics Evaluation
Hurricane Simulation
Hurricane Clips
Hurricane Damage Mitigation
Tropical Cyclone Simulation
Continuous Load Path
spellingShingle Roof-to-Wall Connections
Timber Connections
Fiber Reinforced Polymers
Tri-Axial Performance Testing
Aerodynamic Load Characteristics Evaluation
Hurricane Simulation
Hurricane Clips
Hurricane Damage Mitigation
Tropical Cyclone Simulation
Continuous Load Path
Canino-Vazquez, Iván R.
Aerodynamic Load Characteristics Evaluation and Tri-Axial Performance Testing on Fiber Reinforced Polymer Connections and Metal Fasteners to Promote Hurricane Damage Mitigation
description Damages during extreme wind events highlight the weaknesses of mechanical fasteners at the roof-to-wall connections in residential timber frame buildings. The allowable capacity of the metal fasteners is based on results of unidirectional component testing that do not simulate realistic tri-axial aerodynamic loading effects. The first objective of this research was to simulate hurricane effects and study hurricane-structure interaction at full-scale, facilitating better understanding of the combined impacts of wind, rain, and debris on inter-component connections at spatial and temporal scales. The second objective was to evaluate the performance of a non-intrusive roof-to-wall connection system using fiber reinforced polymer (FRP) materials and compare its load capacity to the capacity of an existing metal fastener under simulated aerodynamic loads. The Wall of Wind (WoW) testing performed using FRP connections on a one-story gable-roof timber structure instrumented with a variety of sensors, was used to create a database on aerodynamic and aero-hydrodynamic loading on roof-to-wall connections tested under several parameters: angles of attack, wind-turbulence content, internal pressure conditions, with and without effects of rain. Based on the aerodynamic loading results obtained from WoW tests, sets of three force components (tri-axial mean loads) were combined into a series of resultant mean forces, which were used to test the FRP and metal connections in the structures laboratory up to failure. A new component testing system and test protocol were developed for testing fasteners under simulated tri-axial loading as opposed to uni-axial loading. The tri-axial and uni-axial test results were compared for hurricane clips. Also, comparison was made between tri-axial load capacity of FRP and metal connections. The research findings demonstrate that the FRP connection is a viable option for use in timber roof-to-wall connection system. Findings also confirm that current testing methods of mechanical fasteners tend to overestimate the actual load capacities of a connector. Additionally, the research also contributes to the development a new testing protocol for fasteners using tri-axial simultaneous loads based on the aerodynamic database obtained from the WoW testing.
author Canino-Vazquez, Iván R.
author_facet Canino-Vazquez, Iván R.
author_sort Canino-Vazquez, Iván R.
title Aerodynamic Load Characteristics Evaluation and Tri-Axial Performance Testing on Fiber Reinforced Polymer Connections and Metal Fasteners to Promote Hurricane Damage Mitigation
title_short Aerodynamic Load Characteristics Evaluation and Tri-Axial Performance Testing on Fiber Reinforced Polymer Connections and Metal Fasteners to Promote Hurricane Damage Mitigation
title_full Aerodynamic Load Characteristics Evaluation and Tri-Axial Performance Testing on Fiber Reinforced Polymer Connections and Metal Fasteners to Promote Hurricane Damage Mitigation
title_fullStr Aerodynamic Load Characteristics Evaluation and Tri-Axial Performance Testing on Fiber Reinforced Polymer Connections and Metal Fasteners to Promote Hurricane Damage Mitigation
title_full_unstemmed Aerodynamic Load Characteristics Evaluation and Tri-Axial Performance Testing on Fiber Reinforced Polymer Connections and Metal Fasteners to Promote Hurricane Damage Mitigation
title_sort aerodynamic load characteristics evaluation and tri-axial performance testing on fiber reinforced polymer connections and metal fasteners to promote hurricane damage mitigation
publisher FIU Digital Commons
publishDate 2009
url http://digitalcommons.fiu.edu/etd/128
http://digitalcommons.fiu.edu/cgi/viewcontent.cgi?article=1148&context=etd
work_keys_str_mv AT caninovazquezivanr aerodynamicloadcharacteristicsevaluationandtriaxialperformancetestingonfiberreinforcedpolymerconnectionsandmetalfastenerstopromotehurricanedamagemitigation
_version_ 1718581376174784512