Output Stability Analysis for Nonlinear Systems with Time Delays

Systems with time delays have a broad range of applications not only in control systems but also in many other disciplines such as mathematical biology, financial economics, etc. The time delays cause more complex behaviours of the systems. It requires more sophisticated analysis due to the infin...

Full description

Bibliographic Details
Other Authors: Gallolu Kankanamalage, Hasala Senpathy (author)
Format: Others
Language:English
Published: Florida Atlantic University
Subjects:
Online Access:http://purl.flvc.org/fau/fd/FA00004935
http://purl.flvc.org/fau/fd/FA00004935
Description
Summary:Systems with time delays have a broad range of applications not only in control systems but also in many other disciplines such as mathematical biology, financial economics, etc. The time delays cause more complex behaviours of the systems. It requires more sophisticated analysis due to the infinite dimensional structure of the space spaces. In this thesis we investigate stability properties associated with output functions of delay systems. Our primary target is the equivalent Lyapunov characterization of input-tooutput stability (ios). A main approach used in this work is the Lyapuno Krasovskii functional method. The Lyapunov characterization of the so called output-Lagrange stability is technically the backbone of this work, as it induces a Lyapunov description for all the other output stability properties, in particular for ios. In the study, we consider two types of output functions. The first type is defined in between Banach spaces, whereas the second type is defined between Euclidean spaces. The Lyapunov characterization for the first type of output maps provides equivalence between the stability properties and the existence of the Lyapunov-Krasovskii functionals. On the other hand, as a special case of the first type, the second type output renders flexible Lyapunov descriptions that are more efficient in applications. In the special case when the output variables represent the complete collection of the state variables, our Lyapunov work lead to Lyapunov characterizations of iss, complementing the current iss theory with some novel results. We also aim at understanding how output stability are affected by the initial data and the external signals. Since the output variables are in general not a full collection of the state variables, the overshoots and decay properties may be affected in different ways by the initial data of either the state variables or just only the output variables. Accordingly, there are different ways of defining notions on output stability, making them mathematically precisely. After presenting the definitions, we explore the connections of these notions. Understanding the relation among the notions is not only mathematically necessary, it also provides guidelines in system control and design. === Includes bibliography. === Dissertation (Ph.D.)--Florida Atlantic University, 2017. === FAU Electronic Theses and Dissertations Collection