Summary: | Oxidative stress (OS) is strongly implicated in age-related neurodegeneration and
other diseases. Under OS, the production of excessive oxidants leads to increased
damages to cellular components. Recently, RNA has been discovered as a major target of
oxidative damage, including the creation of abasic sites. In this work, we developed a
method for quantifying abasic RNA in cell. Using this method, we have examined the
potential role of the RNA-processing cellular foci, stress granule (SG) and processing
bodies (PB) in eliminating abasic RNA in situ. We demonstrated that RNA is a major
target of oxidative damage, constituting the majority of OS-induced abasic nucleic acids
in HeLa cell. Importantly, the level of abasic RNA is strongly correlated with SG
abundance. Furthermore, inhibition of SG/PB formation causes accumulation of abasic
RNA, suggesting that SG/PB participates in removing oxidized RNA and protects cells
under OS, which offers novel targets for therapeutic intervention in age-related diseases. === Includes bibliography. === Thesis (M.S.)--Florida Atlantic University, 2016. === FAU Electronic Theses and Dissertations Collection
|