Ricci flow and a sphere theorem.
在這篇畢業論文里,我們將闡述微分球面定理。這是由Brelldle和孫理察在2007年用里奇流所證明的。球面定理的研究在微分幾何中有很長的歷史。人們研究一種稱為δ-pillched的截面曲率條件(δ在0和1 之間) ,使得一個緊致單連通的黎曼流形滿足這個曲率條件就會同胚或者微分同胚于一個球面。里奇流是由哈密爾頓在1982年所引進的,當時,他證明了任意一個閉單連通三維黎曼流形只要滿足正的里奇曲率條件就微分同胚于一個球面。 === 在這里,我們會闡述關於里奇流的一些基本結果,包括曲率在里奇流下變化的方式、短時間存在性、唯一性以及曲率和一般張量的高階導數估計。同時,我們也會講述一般的在里奇流下的極大值...
Other Authors: | Huang, Shaochuang. |
---|---|
Format: | Others |
Language: | English Chinese |
Published: |
2013
|
Subjects: | |
Online Access: | http://library.cuhk.edu.hk/record=b5549311 http://repository.lib.cuhk.edu.hk/en/item/cuhk-328767 |
Similar Items
-
Topological Signals of Singularities in Ricci Flow
by: Paul M. Alsing, et al.
Published: (2017-08-01) -
Evolution of a geometric constant along the Ricci flow
by: Guangyue Huang, et al.
Published: (2016-02-01) -
Uniqueness of Conformal Ricci Flow and Backward Ricci Flow on Homogeneous 4-Manifolds
by: Bell, Thomas
Published: (2013) -
The coupled Ricci flow and the anomaly flow over Riemann surface
by: Huang, Zhijie
Published: (2018) -
On the spectrum of the weighted p-Laplacian under the Ricci-harmonic flow
by: Abimbola Abolarinwa, et al.
Published: (2020-03-01)