Random Walks and Induced Dirichlet Forms on Self-similar Sets
眾所週知,一個自相似集K 可等同於它關聯的擴充樹(augmented tree) (X,E) 的雙曲邊界(hyperbolic boundary) ∂HX。在本文裡,我們將上述思路推 廣到緊的α 正則度量測度空間(K,ρ,µ),併研究一類在(X,E) 上返比(return ratio) 為λ ∈ (0,1) 的可逆(reversible) 隨機游動。我們證明Martin 邊界可以與 ∂HX 及K 等同,並且游動的首中分佈(hitting distribution) 即為測度µ。 通過這一設定結合Silverstein 的方法,我們能夠得到對Martin 核(Martin kernel) 和Na...
Other Authors: | |
---|---|
Format: | Others |
Language: | English Chinese |
Published: |
2017
|
Subjects: | |
Online Access: | http://repository.lib.cuhk.edu.hk/en/item/cuhk-1292202 |
id |
ndltd-cuhk.edu.hk-oai-cuhk-dr-cuhk_1292202 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-cuhk.edu.hk-oai-cuhk-dr-cuhk_12922022019-02-19T03:51:15Z Random Walks and Induced Dirichlet Forms on Self-similar Sets 眾所週知,一個自相似集K 可等同於它關聯的擴充樹(augmented tree) (X,E) 的雙曲邊界(hyperbolic boundary) ∂HX。在本文裡,我們將上述思路推 廣到緊的α 正則度量測度空間(K,ρ,µ),併研究一類在(X,E) 上返比(return ratio) 為λ ∈ (0,1) 的可逆(reversible) 隨機游動。我們證明Martin 邊界可以與 ∂HX 及K 等同,並且游動的首中分佈(hitting distribution) 即為測度µ。 通過這一設定結合Silverstein 的方法,我們能夠得到對Martin 核(Martin kernel) 和Naim 核(Naim kernel) 的包含Gromov 積(Gromov product) 項的雙 向估計;同時,X上的離散能量EX 誘導出了一個K 上的能量型(energy form) EK,Naim 核則作為它的跳核(jump kernel) Θ(ξ,η) ρ(ξ,η)−(α+β),這裡β 依 賴於λ,由此推出EK 的定義域是一類Besov 空間Λα,β/2 2,2 。 為使EK 成為一個非局部正則狄氏型(non-local regular Dirichlet form), 我們進一步考察了兩個能量型EX 和EK 之間的函數關係,併通過EX 的 等效電阻(effective resistances) 給出了對Besov 空間Λα,β/2 2,2 鄰界指數(critical exponents) 的判定法則。在本文最後,我們運用網絡簡化(network reduction)的方法計算了某些自相似集上的指數。 It is known that a self-similar set K can be identified with the hyperbolic boundary ∂HX of its associated augmented tree (X,E). In this thesis, we extend the above consideration to compact α-regular metric measure spaces (K,ρ,µ), and study certain reversible random walks with return ratio λ ∈ (0,1) on (X,E). We show that the Martin boundary M can be identified with ∂HX and K, and the hitting distribution of the walk is exactly the measure µ. With this setup and a device of Silverstein, we are able to obtain a two-sided estimates of the Martin kernel and the Naim kernel in terms of the Gromov product; meanwhile, the discrete energy EX on X induces an energy form EK on K. The Naim kernel turns out to be a jump kernel Θ(ξ,η) ρ(ξ,η)−(α+β) where β depends on λ, which implies that the domain ofEK is a Besov space Λα,β/2 2,2 . In order for thisEK to be a non-local regular Dirichlet form, we further investigate the functional relationship of two energy forms EX and EK, and provide some criteria to determine the critical exponents of Besov spaces Λα,β/2 2,2 through the effective resistances of EX. By means of network reduction, we calculate the exponents for some concrete examples on self-similar sets at the end of the thesis. Kong, Shilei. Thesis Ph.D. Chinese University of Hong Kong 2017. Includes bibliographical references (leaves ). Abstracts also in Chinese. Title from PDF title page (viewed on …). Detailed summary in vernacular field only. Kong, Shilei (author.) (thesis advisor.) Chinese University of Hong Kong Graduate School. Division of Mathematics. (degree granting institution.) 2017 Text bibliography text electronic resource remote 1 online resource ( leaves) : illustrations computer online resource cuhk:1292202 local: ETD920180257 local: 991039385383503407 local: XM171116120920_7 eng chi Use of this resource is governed by the terms and conditions of the Creative Commons "Attribution-NonCommercial-NoDerivatives 4.0 International" License (http://creativecommons.org/licenses/by-nc-nd/4.0/) http://repository.lib.cuhk.edu.hk/en/islandora/object/cuhk%3A1292202/datastream/TN/view/Random%20Walks%20and%20Induced%20Dirichlet%20Forms%20on%20Self-similar%20Sets.jpghttp://repository.lib.cuhk.edu.hk/en/item/cuhk-1292202 |
collection |
NDLTD |
language |
English Chinese |
format |
Others
|
sources |
NDLTD |
topic |
|
spellingShingle |
Random Walks and Induced Dirichlet Forms on Self-similar Sets |
description |
眾所週知,一個自相似集K 可等同於它關聯的擴充樹(augmented tree) (X,E) 的雙曲邊界(hyperbolic boundary) ∂HX。在本文裡,我們將上述思路推 廣到緊的α 正則度量測度空間(K,ρ,µ),併研究一類在(X,E) 上返比(return ratio) 為λ ∈ (0,1) 的可逆(reversible) 隨機游動。我們證明Martin 邊界可以與 ∂HX 及K 等同,並且游動的首中分佈(hitting distribution) 即為測度µ。 通過這一設定結合Silverstein 的方法,我們能夠得到對Martin 核(Martin kernel) 和Naim 核(Naim kernel) 的包含Gromov 積(Gromov product) 項的雙 向估計;同時,X上的離散能量EX 誘導出了一個K 上的能量型(energy form) EK,Naim 核則作為它的跳核(jump kernel) Θ(ξ,η) ρ(ξ,η)−(α+β),這裡β 依 賴於λ,由此推出EK 的定義域是一類Besov 空間Λα,β/2 2,2 。 為使EK 成為一個非局部正則狄氏型(non-local regular Dirichlet form), 我們進一步考察了兩個能量型EX 和EK 之間的函數關係,併通過EX 的 等效電阻(effective resistances) 給出了對Besov 空間Λα,β/2 2,2 鄰界指數(critical exponents) 的判定法則。在本文最後,我們運用網絡簡化(network reduction)的方法計算了某些自相似集上的指數。 === It is known that a self-similar set K can be identified with the hyperbolic boundary ∂HX of its associated augmented tree (X,E). In this thesis, we extend the above consideration to compact α-regular metric measure spaces (K,ρ,µ), and study certain reversible random walks with return ratio λ ∈ (0,1) on (X,E). We show that the Martin boundary M can be identified with ∂HX and K, and the hitting distribution of the walk is exactly the measure µ. With this setup and a device of Silverstein, we are able to obtain a two-sided estimates of the Martin kernel and the Naim kernel in terms of the Gromov product; meanwhile, the discrete energy EX on X induces an energy form EK on K. The Naim kernel turns out to be a jump kernel Θ(ξ,η) ρ(ξ,η)−(α+β) where β depends on λ, which implies that the domain ofEK is a Besov space Λα,β/2 2,2 . In order for thisEK to be a non-local regular Dirichlet form, we further investigate the functional relationship of two energy forms EX and EK, and provide some criteria to determine the critical exponents of Besov spaces Λα,β/2 2,2 through the effective resistances of EX. By means of network reduction, we calculate the exponents for some concrete examples on self-similar sets at the end of the thesis. === Kong, Shilei. === Thesis Ph.D. Chinese University of Hong Kong 2017. === Includes bibliographical references (leaves ). === Abstracts also in Chinese. === Title from PDF title page (viewed on …). === Detailed summary in vernacular field only. |
author2 |
Kong, Shilei (author.) |
author_facet |
Kong, Shilei (author.) |
title |
Random Walks and Induced Dirichlet Forms on Self-similar Sets |
title_short |
Random Walks and Induced Dirichlet Forms on Self-similar Sets |
title_full |
Random Walks and Induced Dirichlet Forms on Self-similar Sets |
title_fullStr |
Random Walks and Induced Dirichlet Forms on Self-similar Sets |
title_full_unstemmed |
Random Walks and Induced Dirichlet Forms on Self-similar Sets |
title_sort |
random walks and induced dirichlet forms on self-similar sets |
publishDate |
2017 |
url |
http://repository.lib.cuhk.edu.hk/en/item/cuhk-1292202 |
_version_ |
1718979092327432192 |